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1 Introduction 
 
Climate change concerns different sectors such as agriculture, forestry, urban and regional 
planning, nature conservation, water management, energy supply and tourism for example.  
Climate change impacts can already be observed at many places and they will inevitably be felt 
more in the future (see for example: DAS, 2008, Chmielewski et al. 2009, Henson, 2011, 
Jendritzky, 2007, Zebisch et al., 2005). It is necessary to develop adaptation measures and to 
stimulate their implementation by decision-makers in politics, administration, economy and society.  
 
Global and regional climate projections have been calculated as part of the IPCC process but also 
for national and international projects. The calculated time period covers more than 140 years 
ranging from e.g. 1960 to 2100. The results are not only available for climate research, but also for 
studies dealing with climate change impact. This is the first time that experts from other disciplines 
than climate research can use climate model information as input for impact models.  
 
The data records for simulations of present time (e.g. 1961 – 2000) and future (2001 – 2100) 
climate are very extensive. Statistical methods and evaluation procedures play a key role when 
dealing with large amounts of data. These methods can be different for questions related to 
groundwater and river management (Arbeitsgruppe KLIWA, 2011), heavy rain events (Aquaplan, 
2010) or economic impacts (Morgan et al., 2009). Furthermore, quality characteristics of results 
can be determined only through statistical analysis, e.g. significance or robustness tests. Another 
important topic is the analysis of extreme values, since they have a strong impact on economy and 
society but  are difficult to analyze (Field et al., 2012). 
 
In December 2010 a workshop was held at the Climate Service Center (CSC) in cooperation with 
the research priority KLIMZUG (Managing climate change in regions for the future), 
www.klimzug.de. The workshop was initiated by CSC and focussed on “Statistical methods for the 
analysis of data from climate models and climate impact models”. The presentations showed the 
variety of issues and methods associated with climate research and climate impact research. 
There was an agreement, that the structured, organized collection of statistical methods would be 
useful for both current projects as well as for future projects dealing with climate change 
adaptation. The collection of statistical methods is being realized in this brochure by the working 
group statistic at the Climate Service Center. 
 
The brochure contains methods which can be applied to climate model and impact data as well as 
to observational data. 
 
 

2 Aim of the brochure 
 
Simulations using regional climate models typically extend over time periods of 140 years or more. 
Both the current climate as well as the projections of future climate, based on the greenhouse gas 
emission and landuse scenarios, developed by the International Panel on Climatic Change (IPCC) 
are calculated. Due to the variety of several climate models, scenarios and realisations huge 
amounts of data are obtained. They are stored in international data bases, e. g at the World Data 
Center for Climate (WDCC) at the German Climate Computing Centre (DKRZ) in Hamburg. Large 
amounts of climate data are used by scientists for a variety of applications and issues. For this 
purpose it is necessary to have an extensive knowledge of global and regional climate models as 
documented on CSC webpage: 
http://www.hzg.de/science_and_industrie/klimaberatung/csc_web/011606/index_0011606.html.de 
(status: June 2013) 
or published in ‘Leitlinien zur Interpretation regionaler Klimamodelldaten’ (status: Mai 2010) of the 
informal working group ‚Interpretation of regional climate scenario results’ of the German federal 
environment agencies: http://klimawandel.hlug.de/?id=448. 
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Many different statistical methods and procedures are used to analyse climate data. The statistics 
brochure has the intention to collect these statisitcal methods. This document contains the 
experience of scientists who work in current adaptation projects on various topics. The brochure 
shows clearly which methods and procedures are used in climate research and impact modelling. 
The statistical methods give a brief explanation of the scope of application, an evaluation of the 
method, and a short description of the requirements for the usage. The brochure is so to say a 
product ‘from users for users’. Thus it serves as an addition to statistical literature and scientific 
publications. 
 
The brochure is adressed to different users of  from climate and impact model data as well as 
observational data who need help in finding suitable methods for their data evaluation. The 
brochure is not a textbook, which teaches the fundamental concepts of statistics. It rather 
complements the existing literature, e. g. von Storch and Zwiers, 1998, Schönwiese, 2006 as well 
as Mudelsee, 2010, and gives suggestions on how practical issues can be solved. The described 
methods additionally contain information about the authors of the respective method sheet, to give 
an opportunity for further inquiries. If the author cannot be contacted the CSC will provide help 
(csc-anfragen@hzg.de). 
 
 

3 Structure of the statistics brochure 
 
The concept of the brochure is ‘from users for users’ to establish a relation between the brochure 
and its readers. Thus it is possible to provide gained experience besides the actual methodology. 
Therefore it reflects the range of methods that are currently being used in research and adaptation 
projects. Statistical methods with different applications are listed multiple times in order to 
document the range of possibilities. The structuring of the methods is from easy to complex. 
 
The structure of the statistic brochure is based on the experiences of the CSC-working group 
statistics. Expert advice was offered by Dr. Petra Friederichs (University of Bonn) and Dr. Manfred 
Mudelsee (Climate Risk Analysis, Hannover) to improve the compilation of the methods. The 
following categories have been established, which play an important role in adaptation projects: 
 
 

• General statistic methods 
• Frequency distributions  
• Times-series analysis 
• Bias-correction 
• Significance tests  
• Regionalisation 

Downscaling 
Interpolation 

• Extreme value analysis 
       Selection method  
       Parameter estimation 
       Empirical methods  
       Extreme value analysis methods 
• Indexes  

Model evaluation measures 
Statistical climate indexes  

• Spatiotemporal methods 
• Ensemble analysis 
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In the description of the statistical methods the requirements for their application, the assessment 
and application examples are specified. 
The introduction to each categorie (chapter 5) has been written by Manfred Mudelsee. 
 
The collection of statistical methods is continuously updated at irregular intervals. Therefore, there 
is the opportunity for all readers to submit missing methods or new application examples of already 
described methods. If necessary, new categories can be introduced. 
 
 

4 Use of the methods 

4.1 General information 
 
The present document should be a help to facilitate decisions: which statistical methods can be 
applied for which question, which set of preconditions must be fulfilled and how is it assessed. The 
references cited in the statistical methods is given in bibliography. The compilation of the methods 
does not claim to be complete. The brochure relies on methods submitted by  users.  
 
When using any statistical method described here it is crucial to check in each case if all conditions 
for application are fulfilled. Sometimes methods are used when requirements are violeted. This 
may be justified in individual cases, when the method gives results that deviate only little from the 
results in case of fullfilled requirements. Such methods are called robust.  
 
The brochure contains single methods. For certain methods it is often necessary to apply several 
single methods one after the other (see section 4.3).  
 

4.2 Interpretation and assessment of results 
 
The assessment of the statistical methods had a high priority at the query. This should help the 
users to estimate the quality of their results. However, for the evaluation and analysis of large 
amounts of data other aspects have to be considered, too. This concerns the recommended use of 
a model ensemble, for example. The gained results show a bandwidth that must be evaluated (see 
section 5.10 Ensemble analysis). It is also recommended that, if possible, several impact models 
and evaluations methods should be used (methodological diversity). Additional information is given 
in ‘Leitlinien zur Interpretation regionaler Klimamodelldaten’, http://klimawandel.hlug.de/?id=448 
and in Kreienkamp et al. (2012). 
 

4.3 Combination of methods 
 
The application of one single method in practice is rather the exception. Generally, problems are 
solved by using several methods. The objective of the brochure is not to create a recipe book “how 
to combine statistical methods”. The following basically applies: Complex issues require statistical 
expertise!  
 
Nevertheless, some possible and frequently used combinations of statistical methods will be 
presented, in order to make an easier access to the subject.  
Example 1: 
In practice one question more frequently asked is related to the exceedance probability or the 
average return period of certain extreme events. This problem can be tackled with an extreme 
value statistical analyses, for examples using the of general extreme value distribution of a time 
series (method No. xx). Such an analysis is, however, subject to certain conditions that must be 
checked in advance. The most important prerequisites for this are the stationarity, homogeneity 
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and independence of the events to be analyzed. This is usually achieved through an appropriate 
choice of the extreme value collective. 
 
As a result we have the following combination of statistical methods:  
 
1. Calculation of the linear trend of the time series (e. g. section No. 5.3.6) to test the 

stationarity 
2. Review of the significance of the linear trend (e.g. method No. 5.5.1) 
3. If necessary, correction of the time series with significant trends or jumps 
4. Application of the general extreme value function on the (corrected) time series (method 

5.7.4.2) 
 
 
Example 2: 
A further issue is the determination of the climate change signal either in climate models or impact 
models. This task is based on the changes of the frequency distribution of a model parameter and 
the testing for changes of the significance. A possible combination of statistical methods would be: 
 
1. Determination of the relative frequency distribution of a parameter from a climate model or 

impact model related to a time period of the presence or future (section No. 5.2.2) 
2. Calculation of the relative changes of frequency in the future related to that in presence 
3. Test for significance of the difference between the relative frequencies (z-test) (section 

5.5.6) 
 
 
Example 3:    
In the context of time series there are frequent investigations made to analyze short-or long-term 
fluctuations. This can be made for example with on low, high or band pass filter. However, for such 
applications it requires equidistant time series. But, sometimes time-series have gaps or measured 
values are non-equidistant. In such a case the following procedure is proposed.  
 
1.  Temporal interpolation of existing values with the aim to close gaps and generate 

equidistant time series using splines (section No. 5.6.2.4) 
2. Application of various low, high or band pass filter (section No.5.3.5) 
 
In general, it is preferable to directly analyse the unevenly spaced time series. Interpolation means 
‘a step away’ from the original data, it may introduce bias. Note that filter methods exist that can 
treat unevenly spaced series (Ferraz-Mello, 1981). 
 
 
Example 4: 
Within extreme value analysis, sometimes the question arises which extreme value distribution 
(EVD) can represent the sample of selected extreme values best. In literatur these tests and 
methods are often called “goodness of fit” tests or tests of fit for the EVD. Here we give an example 
for the test of fit for the EVD which is based on distance values (D-values) between the empirical 
distribution function (EDF) and theoretical EVD. For doing this, the following methods can be 
combined: 
 
1.      Selection of extreme values (see section 5.7.1 Selection methods) 
2.  Fitting of statistical extreme value distributions to the sample (see section 5.7.2 Parameter 

Estimation) 
3.  Calculation of difference values between the EDF and the fitted EVDs (Lilliefors test:  section 

5.7.2.3) 
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5 Statistical methods 
 
Summary. Climate is a paradigm of a complex system. It has many variables, which act 
nonlinearly on a wide range of space–time scales. Mathematical models simulate the climate and 
its impacts. Statistical methods use the model output data to infer properties of the climate system. 
Uncertainties of this inference are inevitable. They arise from (1) the variability of the climate itself, 
(2) the imperfectness of climate and impact models owing to limitations in our understanding and in 
computing power (nevertheless climate models belong to the most sophisticated computational 
endeavours) and (3) the non-availability of measurement data (necessary to calibrate climate 
models) at any space–time point. The statistical inference should therefore not only report the best 
guess (estimate) but also its uncertainty. 
 
The presented statistical methods described in the following sections have been found useful by 
climate researchers to explore various properties of the climate system. General statistical 
methods (Section 5.1) treat fundamental concepts. Frequency distributions (Section 5.2) deal with 
probability and methods to infer the distribution of a climate variable. 5.7 Extreme value analysis 
(Section 5.7) requires selection of the extremes from the data. Bias correction (Section 5.4) and 
Regionalisation (Section 5.6) are tools specifically made for the improvement of climate model 
output data. The section Indexes (Section 5.8) describes measures for qualitative assessments of 
simulations as well as Indexes which are an elegant, modern way to distill the high-dimensional 
climate model output into a single number. More advanced fields of statistical analysis are 
spatiotemporal methods (Section 5.9), Significance tests (Section 5.5) and Time series analysis 
(Section 5.3). The section Ensemble analysis (Section 5.10) describes the handling of a large 
variety of climate models, greenhouse gas emissions and land-use scenarios, and realisations of 
the simulated climate. 
 
Further reading. Books that cover most of the methods and are written by/for geoscientists 
include the classic Statistical Analysis in Climate Research (von Storch and Zwiers 1999) as well 
as Climate Time Series Analysis (Mudelsee 2010). An accessible and still thorough introduction to 
statistical inference has been written by statistician Wasserman (2004). 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. 
Springer, Dordrecht, 474 pp. 
 
von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University 
Press, Cambridge, 484 pp. 
 
Wasserman L (2004) All of Statistics: A Concise Course in Statistical Inference. Springer, New 
York, 442 pp. 
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5.1 General statistical methods 
 
A fundamental concept for analysing bivariate data sets (two variables) is correlation analysis, that 
is, a quantitative measure of how strong both variables co-vary. The statistical methods present 
correlation methods of varying degree of robustness, from non-robust Pearson’s correlation 
coefficient (Section 5.1.1), to more robust versions due to Spearman (Section 5.1.2) and Kendall 
(Section 5.1.3). Note that the usual price to be paid for enhanced robustness is reduced precision 
(e.g., wider error bars), but in climate sciences it often is advisable to buy robustness. 
 
Further reading. The concept of robustness was introduced by Box (1953). Robust correlation 
methods are treated by Kendall and Gibbons (1990). 
 
Box GEP (1953) Non-normality and tests on variances. Biometrika 40:318–335. 
 
Kendall M, Gibbons JD (1990) Rank Correlation Methods. 5th edn., Edward Arnold, London, 260 
pp. 
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5.1.1 Correlation measure: Pearson’s product moment correlation coefficient 
 

Superordinate objective (category) General statistical methods 
Method Correlation measure: Pearson’s product moment 

correlation coefficient 
Description + literature Dimensionsless measure for the degree of the linear 

relation between two variables: 
 
 
 

 

 
C.D Schönwiese (2006): Praktische Statistik für 
Meteorologen und Geowissenschaftler, pp.163ff. 

Useful for (parameter, time resolution) All variable pairs that are in a linearly increasing/decreasing 
relation 

Requirements for application Existence of linear relation, data on cardinal scale, 
independent data (no autocorrelation), absence of third 
variables influencing the relation, n ≥ 30 

Result/interpretation Pearson’s r is between –1 and +1, 
+1 = complete positive linear relation; 
0 = no relation; 
–1 = complete negative linear relation. 
 
A statistical relation does not necessarily imply a causal 
relation, see the example of such a spurious relation 
between birth rate and stork population.  
 
The larger n, the more meaningful the result. 

Assessment Standard correlation measure, susceptible to outliers 
Example/publication 

 
© BGW 
Software: Excel, R-Statistics 

Contact/project Andreas Kochanowski 
Andreas_kochanowski@gmx.de 
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5.1.2 Correlation measure: Spearman’s rank correlation coefficient 
 
Superordinate objective (category) General statistical methods 
Method Correlation measure: Spearman’s rank correlation coefficient 
Description + literature Measures the relation between two variables; distribution-

free method. 
 
Rank calculation: Data are brought into ascending order, 
original data values are replaced by their ranks, and the rank 
series are correlated with each other. 
 
Calculation of the rank correlation coefficient (ρ) can also be 
done as follows: 
 

 
 

 

 
C.D Schönwiese (2006): Praktische Statistik für 
Meteorologen und Geowissenschaftler, pp. 163ff. 

Useful for (parameter, time 
resolution) 

All variable pairs that are in a monotonically 
increasing/decreasing relation 

Requirements for application Data on ordinal scale, independent data (no autocorrelation); 
absence of third variables influencing the relation, n ≥ 30 

Result/interpretation Spearman’s ρ is between –1 and +1, 
+1 = complete positive monotonic relation; 
0 = no relation; 
–1 = complete negative monotonic relation. 
 
A statistical relation does not necessarily imply a causal 
relation, see the example of such a spurious relation between 
birth rate and stork population.  
 
The larger n, the more meaningful the result. 

Assessment Robust against the presence of outliers; does not require 
normal distributional shape; does not require linearity of a 
relation (i.e., suited also for logarithmic or exponential 
relation). 

Example/publication 

 
© BGW 
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Software: R-Statistics 

Contact/project Andreas Kochanowski 
Andreas_kochanowski@gmx.de 
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5.1.3 Correlation measure: Kendall’s tau 
 
Superordinate objective (category) General statistical methods 
Method Correlation measure: Kendall’s tau 
Description + literature Measures the relation between two variables; distribution-free 

method. 
 
Rank calculation: Data are brought into ascending order, 
original data values are replaced by their ranks, and the rank 
series are correlated with each other. 
 
Calculation of tau: 

 

A data pair (x, y) is called concordant if the rank 
decreases/increases both in x and x (e.g., rank of x1 > rank of 
x4 and rank of y1 > rank of y4). 
If that is not the case, then the data pair is called discordant 
(e.g., rank of x1 > rank of x4 and rank of y1 < rank of y4). 
 
D.S. Wilks (2006): Statistical methods in atmospheric 
sciences, pp. 55–57 
C.D Schönwiese (2006): Praktische Statistik für Meteorologen 
und Geowissenschaftler, pp. 163ff. 

Useful for (parameter, time 
resolution) 

All variable pairs that are in a monotonically 
increasing/decreasing relation; small sample sizes are 
possible. 

Requirements for application Data on ordinal scale, independent data (no autocorrelation); 
absence of third variables influencing the relation. 

Result/interpretation Kendall’s tau is between –1 and +1, 
+1 = complete positive relation; 
0 = no relation; 
–1 = complete negative relation. 
  
Kendall’s tau usually takes somewhat smaller absolute values 
than Spearman’s correlation measure. 
 
A statistical relation does not necessarily imply a causal 
relation, see the example of such a spurious relation between 
birth rate and stork population. 

Assessment Useful for small sample sizes and when scales of variables 
show different spacings; robust against the presence of 
outliers; does not require normal distributional shape; does not 
require linearity of a relation (i.e., suited also for logarithmic or 
exponential relation). 
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Example/publication 

 
© BGW 
Software: R-Statistics 

Contact/project Andreas Kochanowski 
Andreas_kochanowski@gmx.de 
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5.2 Frequency distributions 
 
A fundamental conceptualization is that the uncertain or random components of climate (climate 
variability) are described by means of a distribution of the values a climate variable can assume. In 
statistical language (Wasserman 2004), the probability density function (PDF) of a continuous 
variable, X, determines the probability of finding X between some value, x, and another, x + dx, 
where dx goes against zero; that probability is given by the integral of the PDF over the interval [x; 
x + dx]. The presented statistical methods (Sections 5.2.1, 5.2.2 and 5.2.3) infer the PDF by means 
of histograms. 
 
Many statistical inference methods make assumptions about the PDF of the random component, 
such as the normal or Gaussian assumption (bell curve). In practice the assumptions may be 
violated, and statistical methods are called robust if in the case of violation they still deliver results 
of acceptable accuracy. 
 
(What is “acceptable” should be set by the research communities. For climate modellers, we think 
it should be acceptable if, for example, a 95% confidence interval has a true coverage of just 91% 
due to a violation of the distributional assumption, but a true coverage of 78% should not be 
tolerated.) 
 
Further reading. A short, relevant paper on the selection of the histogram bin width is by Scott 
(1979). 
 
Scott DW (1979) On optimal and data-based histograms. Biometrika 66:605–610. 
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5.2.1 One-dimensional Frequency distributions  
 
Superordinate objective (category) Frequency distributions (histogram) 
Method One-dimensional frequency of occurrence (1D-histogram) 
Description + literature (1) Sorting of data of a sample according to size 

(2) Division into classes with a constant or varying class width 
(interval) and an upper (right) or lower (left) class boundary 
(3) Counting how many data points fall into a certain class  
(4) Plotting of frequency of occurrence with the help of a 
frequency table or bar plot (see example below). 
 
Step (2) needs to handle with care, because it changes the 
frequency plot and can lead to misinterpretation of the 
underlying empirical distribution function. Therefore, one has to 
pay attention to the following sub-steps: 

(a) Selection of the class width (interval) 
(b) Selection of the lower (left) class boundary 

 
For the calculation of a rough estimate for the class width 
(interval) of normally distributed data, the formula of SCOTT can 
be applied: 
 
 
with h: class width (interval) 
        σ: standard deviation 
        n: number of elements 
 
For other distributions than Normal distribution, correction 
factors for skewness and kurtosis have been introduced: 
Scott, D. W. On optimal and data-based histogram. In: 
Biometrika (1979) 66 (3): 605-610. doi: 10.1093/biomet/66.3.605 
 
To solve the problem of the selection of the lower (left) class 
boundary SCOTT recommends e.g. the average-shifted 
histogram: 
Scott, D. W. Multivariate Density Estimation: Theory, Practice, 
and Visualization. John Wiley, 1992. ISBN 978-0471547709. 
 
References (Selection, in German only): 
Sachs, L. Angewandte Statistik: Anwendung statistischer 
Methoden, 6. Aufl., Springer-Verlag Berlin, Heidelberg, New 
York, Tokio, 1984, ISBN 3-540-12800-X, S. 46-48.  
 
Von der Lippe, P. Deskriptive Statistik. Gustav Fischer Verlag, 
Stuttgart, Jena, 1993, ISBN 3-437-40268-4 
http://www.von-der-lippe.org/dokumente/buch/buch03.pdf  
 
Plate E.-J.: Statistik und angewandte Wahrscheinlichkeitslehre 
für Bauingenieure, Ernst & Sohn Verlag für Architektur und 
technische Wissenschaften, Berlin, 1993, ISBN 3-433-01073-0, 
S.20-22. 

Useful for (parameter, time 
resolution) 

Different parameter, e.g. hydrographical or meteorological data 
from observations or calculations 
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Requirements for application metrical data which can be sorted according to their values 
Result/interpretation The table of the frequency of occurrence resp. the histogram is 

showing how many elements of the data, in absolute or relative 
numbers, fall into a certain class. 

Assessment Simple and intuitive method for statistical analysis of time series. 
If observed time series are analysed one needs to include a 
specific class for measurement errors (with no values) so that 
the sum of the frequency of occurrence is equal to one resp. one 
hundred per cent. 
With the help of this method the frequency of occurrence can be 
compared between different data sources (e.g. observed and 
modelled data, see example section) and the change of the 
frequency of occurrence can be calculated (see section 4.3 
combination of methods, example 2). 

Example/publication Comparison of frequency of occurrence p[%] of mean wind 
speed with a class width of 2m/s (Fig. a) and mean wind 
direction with a class width of 30° (Fig. b) from model results 
(Cosmo-CLM) and observations (German Weather Service), 
near Warnemünde, reference period 1971–2000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Interpretation of Results: 
Compared to observations, the Cosmo-CLM model results show 
less events at low and high wind speeds, but more events for 

a) 

b) 
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medium speeds (Fig. a). Regarding the wind direction of the 
model, there are more events from East resp. West and few 
events from South, than observed (Fig. b). 

Contact/project Norman Dreier, Hamburg Technical University, Institute of River 
and Coastal Engineering, norman.dreier@uni-rostock.de 

Christian Schlamkow, Geotechnics und Coastal Engineering, 
University of Rostock, christian.schlamkow@uni-rostock.de 
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5.2.2 Relative frequency distributions 
 
Superordinate objective (category) Frequency distributions 
Method Relative frequency distributions (descriptive statistics) 
Description + literature Sorting of data of a sample according to size, division into 

classes: counting how many data points fall into a class and 
normalizing (i.e., dividing by the total sample size). 
 
Sachs L.: Angewandte Statistik: Anwendung statistischer 
Methoden, 6. Aufl., Springer-Verlag Berlin, Heidelberg, New 
York, Tokio, 1984, ISBN 3-540-12800-X, S. 46-48. 
Plate E.-J.: Statistik und angewandete 
Wahrscheinlichkeitslehre für Bauingenieure, Ernst & Sohn 
Verlag für Architektur und technische Wissenschaften, Berlin, 
1993, ISBN 3-433-01073-0, S.20-22. 

Useful for (parameter, time resolution) Applied to temperature and precipitation 
Requirements for application Time series with even spacing 
Result/interpretation Relative frequency (percentage) for a certain class (e.g., 

temperature, class width 0.5°C). The reported frequencies 
can be transformed into the relative sums (empirical 
distribution function). 

Assessment Simple and intuitive method for statistical analysis of time 
series. The choice of the class width influences the shape of 
the frequency plots (class number in dependence on sample 
size). If observational data are analysed you have to take 
care of measurement error (extra class) to ensure that 
relative frequencies add up to 1 or 100%. 

Example/publication Example 1: Comparison of observed and CLM-modelled 
frequencies of daily-mean temperature for station Dresden-
Klotzsche à “cold” bias of CLM for temperatures >15°C 
 
 
 
 

 
 
 
 
 
 
Example 2: Comparison of observed and CLM-modelled 
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frequencies of daily-mean temperature – with/without spatial 
averaging à frequency distribution for Dresden-Klotzsche, 
independent of the number of analysed grid boxes 
 

 
 
 

Contact/project Majana Heidenreich  
Technische Universität Dresden 
majana.heidenreich@tu-dresden.de 
KLIMZUG project: REGKLAM 
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5.2.3 Two-dimensional Frequency distributions  
 
Superordinate objective (category) Frequency distributions (histogram) 
Method Two-dimensional frequency of occurrence (2D-histogram) 
Description + literature The two-dimensional frequency of occurrence specifies the 

entity of all combinations of two variables X (with values xi, 
i=1,…,l) and Y (with values yj, j=1,…,m). In coincidence with the 
one-dimensional frequency (see XXX), the occurrence of the 
combination of the values (xi, yj) can be given either in absolute 
numbers n(xi, yj) and/or relative to the sample size h(xi,yj)= 
n(xi,yj)/ntotal on condition that: 
 
 
 
 
 
with ntotal: sample size 
 
All combinations of the values (xi, yj) can be described with the 
help of a cross-classified table (sometime also called 
contingency table or cross-tabulation) or in form of a histogram 
(see example section). The cross-classified table of the relative 
frequency of occurrence can be written as: 
 

variable Y 

variable 
X y1 … yj … ym 

one-
dimensio

nal 
frequenc

y of 
occurren

ce of 
variable 

X 

x1 h11 … h1j … h1

m h1. 

… … … … … … … 
xi hi1 … hij … him hi. 
… … … … … … … 
xl hl1 … hlj … hlm hl. 

one-
dimensio

nal 
frequency 

of 
occurrenc

e of 
variable Y 

h.1 … h.j … h.m h..=1 

 
Reference (in German only): http://mars.wiwi.hu-
berlin.de/mediawiki/mmstat_de/index.php/Zweidimensionale_H
%C3%A4ufigkeitsverteilung_-_STAT-
Zweidimensionale_H%C3%A4ufigkeitstabellen 
 
See also notes for the one-dimensional frequency of occurrence 
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(see XXX) regarding the selection of the class width and the 
lower (left) class boundary of the variable X resp. Y.  
 
References (Selection, in Germany only): 
Sachs L.: Angewandte Statistik: Anwendung statistischer 
Methoden, 6. Aufl., Springer-Verlag Berlin, Heidelberg, New 
York, Tokio, 1984, ISBN 3-540-12800-X, S. 46-48.  
 
Von der Lippe, P. Deskriptive Statistik. Gustav Fischer Verlag, 
Stuttgart, Jena, 1993, ISBN 3-437-40268-4 
http://www.von-der-lippe.org/dokumente/buch/buch07.pdf  
 
Plate E.-J.: Statistik und angewandte Wahrscheinlichkeitslehre 
für Bauingenieure, Ernst & Sohn Verlag für Architektur und 
technische Wissenschaften, Berlin, 1993, ISBN 3-433-01073-0, 
S.20-22. 

Useful for (parameter, time 
resolution) 

Different combinations of parameters e.g. sea-state parameters 
(wave height and direction) or meteorological parameters (wind 
speed and direction). 

Requirements for application Metrical data or data with a nominal resp. ordinal scale. 
Result/interpretation The cross-classified table or the histogram informs about the 

absolute or relative number of combinations of the variable X 
and Y (e.g. wave height and direction). Moreover the one-
dimensional frequency of occurrence of the variables X and Y 
can be described in the last row resp. column of the table (see 
example at description section). 

Assessment More complex method for statistical analysis of time series. If 
observed time series are analysed one needs to include a 
specific class for measurement errors (with no values) so that 
the sum of the frequency of occurrence is equal to one resp. one 
hundred per cent. 
With the help of this method the frequency of occurrence can be 
compared between different data sources (e.g. observed and 
modelled data) and the change of the frequency of occurrence 
can be calculated. 

Example/publication Histogram of the frequency of occurrence of observed wind 
speed and direction (German Weather Service) near 
Warnemünde and for the reference period 1971-2000. Please 
note that class width of the wind speed is 1m/s and of the 
direction 10°. The numbers of events are classified with colours 
from the colourbox to the right. 
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Interpretation of Results: 
It can be seen from the figure that there are only few strong wind 
events with wind speeds more than 20m/s (which corresponds 
to Beaufort class 9). For those events the main wind direction 
ranges from south-west to north-west. The majority of events 
with medium wind speeds (e.g. 5-20m/s) are coming from 
westerly directions too. Moreover it can be seen from the figure 
that the higher the wind speeds, the lower the number of events 
and the wind direction is turning towards north-west. In contrast 
events with low wind speeds (e.g. 0-5m/s), which occurred 
obviously most, are coming mainly from south-easterly to south-
westerly directions. 

Contact/project Norman Dreier, Hamburg Technical University, Institute of River 
and Coastal Engineering, norman.dreier@uni-rostock.de 

Christian Schlamkow, Geotechnics und Coastal Engineering, 
University of Rostock, christian.schlamkow@uni-rostock.de 
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5.3 Time series analysis 
 
“Climate change” refers to time, and the analysis of modelled or observed time series, such as 
global surface-air temperature over the past millennium, is an important field for climate analysis. 
One of the earliest papers in statistical time series analysis examined a “supposed 26 day period of 
meteorological phenomena” (Schuster 1898). 
 
A possible view of climate change is a time-dependent random variable that is composed of trend, 
outliers / extremes and variability / noise (Mudelsee 2010); this structural approach is also the 
basis of a presented method (Section 5.3.1). The task of the analysis is to use the data for 
estimating the parameters describing the trend, variability and other components. 
 
Trend estimation, that is, quantifying climate changes, is of high priority. This is reflected by the 
variety of presented methods: linear regression (Section 5.3.6), where a simple parametric trend 
model is employed; various applications of the running mean (Sections 5.3.1, 5.3.2 and 5.3.3), 
where no parametric trend form has to be assumed; and the running median (Section 5.3.4), which 
is a robust counterpart to the running mean; also flexible trend analysis (Section 5.3.8) is a 
nonparametric method. Nonparametric regression is also called smoothing. Its idea is to cancel out 
high-frequency variability (noise) by means of, for example, a running window. Other tools to 
extract low-frequency trends are numerical frequency filtering (Section 5.3.5) or the comparison of 
different time slices (Section 5.3.7). Besides trend, also the variability of a climate variable may be 
decomposed into different classes (Section 5.3.10). 
 
Further reading. The book by Mudelsee (2010) is specifically on the analysis of climate time 
series in the univariate (one variable) and bivariate (two variables) settings. The book by von 
Storch and Zwiers (1999) contains sections on higher-dimensional time series as well. Both 
contain extensive lists of further literature. 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. 
Springer, Dordrecht, 474 pp. 
 
Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 26 
day period of meteorological phenomena. Terrestrial Magnetism 3:13–41. 
 
von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University 
Press, Cambridge, 484 pp. 
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5.3.1 Running mean (1) 
 
Superordinate objective (category) Time series analysis 

Trend estimation 
Method Running mean 
Description + literature Calculation of arithmetic means of temporally successive data 

points 
Useful for (parameter, time resolution) For example, frequency of overflows, size of overflows; 

temporal resolution: any 
Requirements for application Gap-free time series 
Result/interpretation Reduces variability and allows analysis of trends 
Assessment Simple and fast analysis of time series 
Example/publication Kuchenbecker et al., KA 2010 
Contact/project Nina Hüffmeyer 

Hamburger Stadtentwässerung AöR 
nina.hueffmeyer@hamburgwasser.de 
KLIMZUG-NORD 
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5.3.2 Running mean (2) 
 
Superordinate objective (category) Time series analysis 

Trend estimation 
Method Running mean 
Description + literature Calculation of running 10- and 11-year averages as well as 

running 30- and 31-year averages, respectively, from 
transient time series of simulated climate parameters. (Note: 
If the central point of the chosen running time interval is 
considered, usage of 11- and 31-year averages is useful.) 

Useful for (parameter, time resolution) Arbitrary variables in monthly, seasonal and yearly resolution. 
Requirements for application Sufficiently long, gap-free time series 
Result/interpretation Rendering the time series as running 10- or 11-year means 

allows to visualize the decadal variability. Rendering the time 
series as running 30- or 31-year means allows to determined 
the bandwidth of the climate change. 

Assessment Simple, fast analysis and visualization 
Example/publication Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008): 

Klimaauswirkungen und Anpassung in Deutschland: 
Erstellung regionaler Klimaszenarien für Deutschland mit dem 
Klimamodell REMO. Forschungsbericht 204 41 138 Teil 2, 
i.A. des UBA Dessau 
Jacob D, Bülow K, Kotova L, Moseley C, Petersen J, Rechid 
D: Regionale Klimasimulationen für Europa und Deutschland 
– in Vorbereitung 
 
Example 1: Projected changes in winter temperature in the 
Hamburg metropolitan area as simulated with REMO and 
CLM, compared with the reference period 1971–2000; plotted 
as running 11-year means. 
 

 
Example 2: Projected changes in winter temperature in the 
Hamburg metropolitan area as simulated with REMO and 
CLM, compared with the reference period 1971–2000; plotted 
as running 31-year means, also shown yearly values for 
various scenarios and runs (grey). 
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Contact/project Diana Rechid 
MPI für Meteorologie 
diana.rechid@zmaw.de 
KLIMZUG NORD 
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5.3.3 Running mean (3) 
 
Superordinate objective (category) Time series analysis 

Trend estimation 
Method Running mean 
Description + literature Simple trend estimation using running means 

 
J.-P. Kreiß & G. Neuhaus (2006):Einführung in die 
Zeitreihenanalyse, Springer-Verlag. 

Useful for (parameter, time resolution) Temperature, precipitation, irradiance and other 
meteorological variables, runoff; 
monthly and yearly values 

Requirements for application Long, gap-free time series (here: > 100 years) 
Result/interpretation Reduced variability, visualized trends 
Assessment Simple, fast method 
Example/publication Central/symmetrical running 11-year means 

 
Bernhofer et al. (2009, 2011) 
 

 
 

Contact/project Majana Heidenreich (TU Dresden), Daniel Leistner (TU BA 
Freiberg), Andreas Hoy (TU BA Freiberg) 
majana.heidenreich@tu-dresden.de 
daniel.leistner@ioez.tu-freiberg.de andreas.hoy@ioez.tu-
freiberg.de 
KLIMZUG project: REGKLAM 

 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales 
Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-Verlag Dresden 
 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2009): Das Klima in der REGKLAM-Modellregion 
Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales 
Klimaanpassungsprogramm für die Modellregion Dresden, Heft 1, Rhombos-Verlag Dresden 



 32 

5.3.4 Running median 
   
Superordinate objective 
(category) 

Time series analysis 
Trend estimation 

Method Running median 
Description + literature Robust nonparametric trend estimation. 

 
Robust means that the method is unaffected by the presence of 
extremes. You use the running median (calculated over the points 
inside a running window) for nonparametric background or trend 
estimation, and not the running mean. 
 
Mudelsee M (2006) CLIM-X-DETECT: A Fortran 90 program for 
robust detection of extremes against a time-dependent background 
in climate records. Computers and Geosciences 32:141–144. 

Useful for (parameter, time 
resolution) 

All parameters at any temporal resolution. 
 
Note that high time resolution may result in a strong autocorrelation, 
which has to be considered in the selection of the number of 
window points (i.e., more window points have to be used compared 
to an autocorrelation-free situation). 

Requirements for application Homogeneity and representativeness of the data. In the case of 
autocorrelated data, the cross-validation guideline may be less 
informative and other numbers of window points have to be tried. 

Result/interpretation Trend or time-dependent background estimate 
Assessment A robust standard method, there exist cross-validation guidelines 

(supplied by the software), but you should try also other values and 
study the sensitivity of the results. 

Example/publication See Section 5.7.1.3. 
 
The original paper (Mudelsee 2006) explains the method and 
describes the Fortran 90 software CLIM-X-DETECT. 

Contact/project Manfred Mudelsee 
Climate Risk Analysis, Hannover, Germany; 
mudelsee@climate-risk-analyis.com 
www.climate-risk-analysis.com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 33 

5.3.5 Numerical filtering: high-, low- and bandpass filters 
 
Superordinate objective (category) Time series analysis 

 
Method Numerical filtering: high-, low- and bandpass filters (filter 

weights from, e.g., standard normal distribution) 
Description + literature Representation of short- and long-term variations (of different 

periods) in time series 
 
Numerical filters are described in an accessible manner by:  
 
C.-D. Schönwiese. Praktische Statistik für Meteorologen und 
Geowissenschaftler. Gebrüder Bornträger, Berlin, Stuttgart: 
1985  
 
An R function for calculating of the filtered time series is 
available upon request.  

Useful for (parameter, time resolution) Hydrological time series (precipitation, evaporation, runoff 
components, etc.); 
yearly, monthly, daily and hourly values 

Requirements for application Complete (gap-free), equidistant time series 
Result/interpretation Filtered time series, which shows the short-/long-term 

variations of the original time series. 
Assessment A lowpass filter shows better than a running mean the long-

term variations. 
Example/publication W. Roedel u. T. Wagner: Physik unserer Umwelt: Die 

Atmosphäre, 4th ed., Springer-Verlag Berlin Heidelberg 2011, 
auf S. 177 

Contact/project Frank Herrmann 
Forschungszentrum Jülich GmbH 
Institut für Bio- und Geowissenschaften 
f.herrmann@fz-juelich.de 
KLIMZUG Nord 



 34 

5.3.6 Linear Regression 
 
Superordinate objective 
(category) 

Time series analysis 
Trend estimation 

Method Linear regression 
Description + literature Describes a linear dependence of one variable, y, on another, 

independent variable, x, in the form y = c + a x. With least-squares 
estimation, the sum of the squares of the errors (i.e., difference 
between data value and the value of the regression function), also 
called the residual variance, is minimized. This means intuitively that 
a regression line fits best to the empirically determined (or 
measured) y-values. The sum of squares in the vertical (y) direction 
is smaller than the sums in any other direction. 
 
von Storch and Zwiers, Statistical Analysis in Climate Research, 
Cambridge University Press, 1999 
 
This method is extensively treated in introductory statistics textbooks. 

Useful for (parameter, time 
resolution) 

Variables that depend linearly on other, continuous variables. 

Requirements for application Linearity of the relation between dependent and independent 
variables. Independet and normally distributed residuals with 
constant variance. Violation of these assumptions may lead to 
erroneous results and conclusions.  

Result/interpretation Linear description of the relation, given by the determined 
parameters (a, c). In usual statistical software packages, also the 
estimation uncertainty of the parameters is quantified. 

Example/publication “A simple empirical model for decadal climate prediction” (Krueger, O 
& J-S von Storch), Journal of Climate, 2011, doi: 
10.1175/2010JCLI3726.1 

Contact/project Oliver Krüger 
Helmholtz-Zentrum Geesthacht 
Institut für Küstenforschung 
Oliver.krueger@hzg.de 
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5.3.7 Comparison of different time slices with respect to mean, variability and/or 
distribution 

 
Superordinate objective 
(category) 

Time series analysis 
Trend estimation 

Method Difference between time slices à comparison of “future time 
slices” from the simulated projections (e.g., 2021–2050, 2071–
2100) with the time slices from the reference period (e.g., 1961–
1990); the latter period uses simulated or observed values or 
distributions. 

Description + literature Comparison of different time slices with respect to mean, 
variability and/or distribution 

Useful for (parameter, time 
resolution) 

Various climate variables, such as precipitation, temperature, wind 
speed, etc., as well as derived indexes, such as climatological 
threshold days. 
Principally suited for all temporal resolutions. 

Requirements for application Compared time slices should comprise the same span, and they 
should be long enough for a statistical climate description 
(preferably at least 30 years) 

Result/interpretation Detection of climate-change signals 
Assessment Since the relative change-signals are considered (related to 

modelled reference rather than to observed reference), trends 
resulting from different models with different systematic erros 
(bias), become comparable. 

Example/publication Bernhofer et al. (2009, 2011) 
Contact/project Majana Heidenreich (TU Dresden), Stephanie Hänsel (TU BA 

Freiberg) 
majana.heidenreich@tu-dresden, stephanie.haensel@ioez.tu-
freiberg.de 
KLIMZUG project: REGKLAM 

 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales 
Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-Verlag Dresden 
 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2009): Das Klima in der REGKLAM-Modellregion 
Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales 
Klimaanpassungsprogramm für die Modellregion Dresden, Heft 1, Rhombos-Verlag Dresden 
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5.3.8 Flexible trend analysis 
 
Superordinate objective (category) Time series analysis 

Trend estimation 
Method Flexible trend analysis 
Description + literature Analysis of all trend combinations that can be utilized for a 

predefined time window 
 
Rapp J (2000) Konzeption, Problematik und Ergebnisse 
klimatologischer Trendanalysen für Europa und Deutschland . 
Berichte des DWD, 212, Offenbach, 145 S. 

Useful for (parameter, time 
resolution) 

Time series of frequencies (e.g., circulation types), climate 
parameters (e.g., Temperatur); temporal resolution: freely 
adjustable (e.g., in project: yearly resolution) 

Requirements for application Gap-free and preferably long and homogeneous time series 
Result/interpretation Maximum information at maximum compression; method 

avoids bias from subjectively predefined time windows for trend 
analysis 

Example/publication Allows to interpret climate change signals at maximum 
accuracy; high complexity makes interpretation harder 

Contact/project Rapp 2000; Hoy A, Sepp M, Matschullat J (in preparation): 
“Variability of atmospheric circulation in Europe and Russia 
(1901–2010)” 

Method Andreas Hoy (TU BA Freiberg) 
andreas.hoy@ioez.tu-freiberg.de 
KLIMZUG-Projekt: REGKLAM, TP 2.1 
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Figure 1: VGc W+ (1901-2010); a) variable trend analysis: depicted are all possible trend 
combinations for periods from 10 to 110 years (upper left); b) absolute frequency/ linear trend (30 
year moving average) (lower right); the thin black line in the upper left picture depicts 30 year 
trends and is illustrated as linear trend line in the lower right picture 
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Figure 2: As in figure 5, but for GWLc W* 
1) Applying a variable trend analysis (Rapp 2000) allows a thorough, yet manual (and subjective) 
investigation of trend behaviour. All possible combinations of linear trends during 1901-2010 are 
illustrated for periods lasting from 10 to 110 years in one matrix (figures 1 and 2; upper left). The 
trend matrixes illustrate complex pictures with high fluctuations of trend direction and magnitude in 
shorter time frames up to approximately 30 years, especially for W*. Here trends are generally 
weak, but more stable in longer periods. Relatively strong positive trends for W* are visible starting 
from the 1950s and ending in the 1990s. W+, on the other hand, shows very strong and unusually 
stable signals. Until the 1960s trends of most time scales were almost completely negative, while 
frequencies showed almost undisturbed, very strong increasing trends afterwards. It get´s visible 
that trends over 110 years do not easily get disturbed by short- and medium term fluctuations. 
Their temporal location, however, is always subjectively chosen and only allows robust conclusions 
for the chosen time frame, without the possibility of analysing fluctuations within that period. Given 
the time series of W+, it gets clear that long term linear trends do not yield much value given such 
pronounced opposing trend values within a time frame. On the other hand, a variable trend 
analysis depicts the trend behaviour with maximum completeness, but the involved complexity 
often impedes the observer from drawing clear conclusions of trend characteristics within an 
investigation period. The problem of complexity further multiplies when comparing a number of 
different circulation forms.  
2) Analysing moving trend variables of a single length (e.g., 30 years) is therefore a method to 
reduce complexity, while still showing fluctuations in trend direction and magnitude over time 
(figures 1 and 2; lower right). Given the predominantly clear trend behaviour of W+ an 
interpretation of the trend line is relatively easy. This task gets more complicated, if the magnitude 
of fluctuations is smaller, but a higher number of changes in trend direction are visible over time, 
like for W*. Hence, while this method allows identifying periods of clear trend behaviour without 
varying temporal complexity, it still lacks an easy and clear way to detect and interpret frequency 
changes.  
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3) Finally, illustrating a smoothened time series of moving (e.g., 30 years) frequency values is a 
classical way of analysing fluctuations in time series (figures 1 and 2; lower right). Here a very 
clear and easily interpretable picture is given for W+, with a bisection of frequencies until the 1970s 
and a following strong increase. It also gets clear that no relevant trend is present for W*. Given 
the straightforward goal of interpreting changes in time series this common way of analysing time 
series is the clearest of the presented methods. It will be therefore used in the following section to 
investigate frequency changes in more detail compared to the inspection of linear trends. Shorter 
periods lasting 11 years (compared to 30 years in this chapter) are used to obtain a more detailed 
picture of frequency changes over time while still removing the noise of annual fluctuations. 
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5.3.9 Structural time series analysis, maximum likelihood method 
 
Superordinate objective (category) Time series analysis 
Method Structural time series analysis, maximum likelihood method 
Description + literature The Gaussian (normal), Gumbel and Weibull probability 

density functions are described by means of 2 time-
dependent parameters (mean and standard deviation) 
 
Trömel, S. (2004): 
Statistische Modellierung von Klimazeitreihen, Dissertation, 
J.W. Goethe Universität Frankfurt am Main, 2004. 

Useful for (parameter, time resolution) Monthly mean temperature, 
monthly mean precipitation total 

Requirements for application Long, gap-free time series of at least 100 years length 
Result/interpretation Trends in mean and standard deviation 
Assessment Application of method requires the describability of the time 

series values by means of a probability density function 
(Kolmogorov–Smirnov test) 

Example/publication Bülow, K. (2010): Zeitreihenanalyse von regionalen 
Temperatur- und Niederschlagssimulationen in Deutschland, 
Dissertation, Uni-Hamburg, Berichte zur Erdsystem 
Forschung 75, 2010. 
 
Trömel, S. and C.-D. Schönwiese (2007): Probability change 
of extreme precipitation observed from 1901 to 2000 in 
Germany, Theor. Appl. Climatol., 87, 29--39, 
doi:10.1007/s00704-005-0230-4. 

Contact/project Katharina Bülow  
Bundesamt für Seeschifffahrt und Hydrographie 
katharina.buelow@bsh.de 
KLIWAS 
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5.3.10 Analysis of variance (ANOVA) 
 
Superordinate objective 
(category) 

Time series analysis 

Method Analysis of variance (ANOVA) 
Description + literature Decomposition of the variability of a variable in dependence on 

different classes. For that purpose, the investigated variable is 
divided into different classes (depending on selected factors). Insofar 
the factors influence the variability of the variable, you can see this in 
the averages of the classes that are associated with the factors; 
those averages differ from each other. You can also determine 
whether the variability is explained by known influences (the factors) 
or other, yet unknown influences. Several sub-branches of the 
analysis of variance exist. Common to all is that for each group of 
factors, a test statistic is calculated, which quantifies the ratio of 
explained to unexplained variance. The test statistic is F-distributed 
with two degrees of freedom. To decide among the selected null 
hypotheses (which usually state that no deviation exists between 
sub-groups of factors), you use the test statistic to compare it with 
that F distribution and obtains the probability, P, of finding a variance 
ratio that is at least as high as the observed ratio. If P is very small 
(less than the significance level), that null hypothesis is rejected. 
 
von Storch and Zwiers, Statistical Analysis in Climate Research, 
Cambridge University Press, 1999 
 
This method is extensively treated in introductory statistics textbooks. 

Useful for (parameter, time 
resolution) 

Variables that depend on other variables, which are factorized. The 
analysis of variance describes that dependence. 

Requirements for application Variables that can be grouped into factors. Each group of factors 
should have a similar size. 
 
Further assumptions: normal distributional shape of the investigated 
variable with constant variance as well as independence of 
realizations. 

Result/interpretation Determination whether significant deviations exist between single 
groups of a variable that can be factorized. 

Example/publication Krüger O, von Storch H (2011) Evaluation of an air pressure-based 
proxy for storm activity. J. Climate 24, 2612–2619. 
[http://journals.ametsoc.org/doi/abs/10.1175/2011JCLI3913.1] 
In this article, the “two-way analysis of variance” is used, which 
allows to assess interactions between two factors. The database 
comprises correlations between geostrophic winds (calculated from 
spatiotemporal air-pressure fields by means of triangulation) and 
near-surface winds, which had been transformed to approximate 
normal distributional shape. The authors studied the influence of the 
surface (land or ocean) and of the triangles’ size (large, medium or 
small) on the correlation between both wind variables, and they 
studied whether there exists an interaction between the factors 
surface and size. If those two factors are independent from each 
other, their respective influences on the analysed wind variable are 
also independent from each other. 
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The data were sorted into 6 classes (“surface”, 2; “size”, 3) with 
equal class size. 
 
The employed method of analysis of variance uses three null 
hypotheses, from which two regard direct effects and one regards 
interactive effects. The first null hypothesis, H0, states that there is 
no difference in mean (of transformed correlations) that is related to 
the factor “surface”. The related alternative hypothesis, H1, states 
that there is a difference. Analogously, H0 and H1 were constructed 
on basis of the factor “size”. The null hypothesis, H0, regarding 
interactive effects states that effects of surface and size are 
independent from each other and influence each other. The 
alternative hypothesis, H1, states that there exists interaction and 
dependence. 
 
The ANOVA found for the test regarding ineractive factors a ratio 
between explained and unexplained variance of approximately 0.7. 
The F distribution (with 2 and 690 degrees of freedom) yields a P-
value of approximately 0.45 for observing a variance ratio of 0.7 or 
higher. This large P-value (larger than typically used significance 
levels of, say 0.05 or 0.10) means that H0 (“no interaction”) cannot 
be rejected. The factors “surface” and “size” turn out in this analysis 
to be independent from each other. 
 
The authors found further that both other tests lead to rejecting the 
null hypotheses: the factors “surface” and “size” do have a significant 
influence on the correlation of wind speeds. 

Contact/project Oliver Krüger 
Helmholtz-Zentrum Geesthacht 
Institut für Küstenforschung,  
Oliver.krueger@hzg.de 

 



 43 

5.4 Bias correction 
 
In the context of climate modelling, a bias means a systematic deviation of a climate model 
variable from its observed counterpart. Take for example precipitation during the time interval 
after 1950, for which there are indications from a range of regional climate models that for 
the region of central Europe–Scandinavia the bias is positive, that means, the climate models 
systematically overestimate precipitation (Goodess et al. 2009). The bias is usually thought 
to be due to inadequate model formulations, which root in our incomplete knowledge about 
climate processes and the limited power of our computers. 
 
One remedy to this discomforting situation obviously is to construct better climate models; 
although this is done continuously by modelling groups, it is a process that requires 
development time. The other, "quick and dirty" remedy is to correct the climate model output 
such that the bias disappears. The success of climate model bias correction depends 
critically on (1) an appropriate stochastic description of the form of the bias (e.g., 
additive/multiplicative or constant/time-dependent) and (2) the availability of accurate and 
highly resolved (in space and time) observational data. Another critical point is the danger of 
inconsistencies between climate model variables that are bias-corrected and other variables 
that are not; consider for example the relation between air temperature and the type of 
precipitation (rain versus snow). The area of bias correction is rather new to climate 
modelling, and we should expect considerable new developments in the future. 
 
The bias correction method of choice many climate modellers currently employ is quantile 
mapping (QM), where a relation between the distribution function of a modelled variable and 
the distribution function of an observed variable is established; the two presented QM 
methods (Sections 5.4.1 and 5.4.2) give more details. This may work well when mean 
climatic states are the objective of the analysis and the observational database is good, but 
QM may work less well when extreme climatic states are analysed in a nonstationary context 
(Kallache et al. 2011). A crucial assumption of QM is the stationarity of the bias form, which 
may be violated in the analysis of future climates. 
 
Further reading. A short overview of climate model bias correction with several examples is 
given by Mudelsee et al. (2010). QM is described by Piani et al. (2010). Other corrections, 
including nonstationary methods, are briefly considered by Mudelsee (2010: Section 9.4.4 
therein). Kallache et al. (2011) analyse nonstationary probabilistic downscaling of extreme 
precipitation. 
 
Goodess CM, Jacob D, Déqué M, Guttiérrez JM, Huth R, Kendon E, Leckebusch GC, Lorenz 
P, Pavan V (2009) Downscaling methods, data and tools for input to impacts assessments. 
In: van der Linden P, Mitchell JFB (Eds.) ENSEMBLES: Climate change and its impacts at 
seasonal, decadal and centennial timescales. Met Office Hadley Centre, Exeter, 59–78. 
 
Kallache M, Vrac M, Naveau P, Michelangeli P-A (2011) Nonstationary probabilistic 
downscaling of extreme precipitation. Journal of Geophysical Research 116:D05113 
(doi:10.1029/2010JD014892). 
 
Mudelsee M, Chirila D, Deutschländer T, Döring C, Haerter J, Hagemann S, Hoffmann H, 
Jacob D, Krah‚ P, Lohmann G, Moseley C, Nilson E, Panferov O, Rath T, Tinz B (2010) 
Climate model bias correction und die Deutsche Anpassungsstrategie. Mitteilungen 
Deutsche Meteorologische Gesellschaft 3:2–7. 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap 
Methods. Springer, Dordrecht, 474 pp. 
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Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in 
regional climate models over Europe. Theoretical and Applied Climatology 99:187–192. 
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5.4.1 Quantile mapping with transfer function 
 
Superordinate objective (category) Bias correction 
Method Quantile mapping with transfer function 
Description + literature Statistical correction of systematic deviations of climate model 

data from observed climate data in the past, used for 
application in process-based climate impact models 
 
PIANI, C., G.P. WEEDON, M. BEST, S.M. GOMES, P. 
VITERBO, S. HAGEMANN, J.O. HAERTER, 2010: 
Statistical bias correction of global simulated daily 
precipitation and temperature for the application of 
hydrological models. Journal of Hydrology. 395, 199-215 

Useful for (parameter, time resolution) For example, precipitation, surface air temperature, global 
irradiance  

Requirements for application Observational data of sufficient quality, in daily resolution and 
sufficiently high spatial resolution. Additionally, the 
observational series has to be long enough to secure that the 
apparent model bias is not a result of short-term variability. 

Result/interpretation Corrected daily climate parameters from REMO and CLM 
simulations. For making future projections of parameters you 
have to consider that the climate-change signal on the bias-
corrected data can deviate from the signal on the uncorrected 
data; it is unclear which of the two climate-change signals is 
closer to reality. 

Assessment When applying bias-corrected climate data you have to 
consider: 
(1) the “model-internal” consistence among various climate 
variables may be lost due to the bias correction; 
(2) the climate-change signal may itself be subject to change 
due to the bias correction; 
(3) observational data and method itself are subject to 
uncertainty (and are currently being analysed in climate 
research). 

Example/publication Bias correction of temperature, precipitation, global 
irradiance, wind chill and runoff (projects KLIFF and KLIWAS) 
Mudelsee, M., D. Chirila, T. Deutschländer, C. Döring, J.O. 
Haerter, S. Hagemann, H. Hoffmann, D. Jacob, P. Krahé, G. 
Lohmann, C. Moseley, E. Nilson, O. Panferov, T. Rath, B. 
Tinz, 2010: Climate Model Bias Correction und die Deutsche 
Anpassungsstrategie. Mitteilungen der Deutschen 
Meteorologischen Gesellschaft 03/2010. 
 
Example of Hamburg metropolitan area: annual values (top 
panel) and seasonal cycle (bottom panel) of precipitation as 
simulated with REMO in 3 realizations of the climate control, 
1961–2000, and bias-corrected precipitation of the 1st 
realization of the climate control (bc_C20_1) using the 
REGNIE observational data of the DWD: 
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Contact/project Diana Rechid; Christopher Moseley 

MPI für Meteorologie 
diana.rechid@zmaw.de, christopher.moseley@zmaw.de  
KLIMZUG NORD; KLIFF 
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5.4.2 Modified quantile mapping 
 
Superordinate objective 
(category) 

Bias correction 

Method Modified quantile mapping 
Description + literature Piani C., Haerter J. O and Coppala E. (2010). Statistical bias 

correction for daily precipitation in regional climate models over 
Europe. Theor. Appl. Climatol. 99, 187–192 [quantile mapping as 
basis of method] 
 
Themeßl, M.J., Gobiet, A., Leuprecht, A. (2011): Empirical-
statistical downscaling and error correction of daily precipitation 
from regional climate models. Int. J. Climatol., 31, 1530–1544. 

Useful for (parameter, time 
resolution) 

Daily precipitation series; applications in water management and 
sanitary environmental engineering. 

Requirements for application Model data and observational data have to be available for a 
reference period. 

Result/interpretation On the daily values you make a fit for following 
parameters/indexes of relevance for water management: dry 
days and phases, monthly and annual precipitation totals, 
distribution of precipitation classes (daily values) and extreme-
rainfall days. Daily rainfall totals below and above the 97% 
quantile are treated separately. Up to 97% quantile: perform 
quantile mapping in dependence on calendar month; above 97% 
quantile: perform linear regression separately for the hydrological 
half-years (May to October and November to April). Following 
procedure applies to the total data set: correction using a “dry 
value” to exclude very small daily totals; aggregation of 
neighboured grid boxes with similar properties; and combined 
analysis of both CLM realizations. The relationship functions 
(model–observational data) is transferred from the reference 
period to the future period. 

Assessment For the reference period all mentioned parameters/indexes are 
fitted realistically. Due to fitting to observational point data, also 
the CLM model data have to be interpreted as point data. This is 
meaningful regarding applications because also the water 
management models use point measurements. Interpretation of 
the spatial aspect assumes that the bias-corrected CLM data can 
occur at any point within the CLM grid box (DWD 2000). 
 
DWD (2000) KOSTRA-DWD-2000: Starkniederschlagshöhen für 
Deutschland (1951–2000), Grundlagenbericht. Offenbach am 
Main: Deutscher Wetterdienst, 32pp. 

Example/publication Quirmbach, M., Freistühler, E., Papadakis, I. (2012): „Bias-
Korrektur der Niederschlagsdaten aus dem Regionalen 
Klimamodell CLM in der Emscher-Lippe-Region“, dynaklim-
Publikation, No. 21, März 2012, http://www.dynaklim.de 
 
Quirmbach, M.; Freistühler, E.; Papadakis, I., Pfister, A. (2012): 
„Analyse und Korrektur des systematischen Fehlers (Bias) in den 
Niederschlagsdaten des Regionalen Klimamodells CLM in der 
Emscher-Lippe-Region“, KW Korrespondenz Wasserwirtschaft, 
Jahrgang 5 (2012), Nr. 10, S. 544–555 

Contact/project Markus Quirmbach 
dr. papadakis GmbH, Hattingen 
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M.Quirmbach@drpapadakis.de  
KLIMZUG project DYNAKLIM, ExUS 
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5.5 Significance tests 
 
Statistical inference is done in two ways: estimation and significance testing. The latter, also 
called hypothesis testing, investigates in the context of this brochure whether statements 
about the climate system are true. 
 
Hypothesis testing utilizes a well-elaborated statistical procedure (Lehmann and Romano 
2005). Following Mudelsee (2010): A null hypothesis (or short: null), H0, is formulated. H0 is 
tested against an alternative hypothesis, H1. The hypotheses H0 and H1 are mutually 
exclusive. Next, a test statistic, u, is calculated from the data. The quantity u is a realization 
of a random variable with a distribution function, F0(u), where the “0” indicates that u is 
computed “under H0”, that is, as if H0 were true. F0(u) is called the null distribution. The P-
value is the probability that under H0 a value of the test statistic greater than or equal to the 
observed value, u, is observed (one-sided test). If P is small, then H0 is rejected and H1 
accepted, otherwise H0 cannot be rejected against H1. In a two-sided test, you would study 
the absolute values for the observed u and its distribution under H0. The choice between 
one- and two-sided tests depends on the problem at hand. For example, a one-sided test of 
comparing two samples regarding their mean would correspond to H0 “equal means” and H1 
“mean of first sample is larger than mean of second sample”, and a two-sided test would 
instead correspond to the same H0 but H1 “unequal means”. 
 
The presented bootstrap approach to significance testing (Section 5.5.5) derives F0(u) by a 
computational resampling technique instead of making some assumptions (e.g., regarding 
the distributional shape), which may in the climatological practice be violated. The ratio 
between trend and noise (e.g., of a climate change signal) corresponds to an intuitive testing 
approach from physics (Section 5.5.1). The second presented method is a nonparametric 
test for trend after Mann and Kendall (Section 5.5.2), that is widely employed in climate 
sciences and elsewhere. Further tests are described in (Section 5.5.3, 5.5.4 und 5.5.6). 
 
Further reading. A classic book in statistical science is by Lehmann and Romano (2005). If 
the level therein is found too high, then von Storch and Zwiers (1999) may be consulted. The 
book by Mudelsee (2010) contains a section on bootstrap hypothesis testing. 
 
Lehmann EL, Romano JP (2005) Testing Statistical Hypotheses. 3 edn., Springer, New York, 
784 pp. 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap 
Methods. Springer, Dordrecht, 474 pp. 
 
von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge 
University Press, Cambridge, 484 pp. 
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5.5.1  Trend/noise ratio 
 
Superordinate objective (category) Significance tests 

linear trends 
Method Trend/noise ratio – T/N 
Description + literature Testing for significance by analysing the strength of the trend 

signal: 
 
trend/standard deviation (noise): T/N, 
trend > standard deviation (noise): T/N > 1. 
 
Schönwiese (20064): Praktische Methoden für Meteorologen 
und Geowissenschaftler, 232-234. Stuttgart 

Useful for (parameter, time resolution) Time series data with a linear trend 
Requirements for application Approximate normally distributed data, linear trend, long time 

series 
(http://www.kliwa.de/download/Verfahren.pdf) 

Result/interpretation T/N > 1 means a significant trend with a P-value of at least 
0.7 
 
P-values (or significances are tabulated) 
 
Schönwiese (20064): Praktische Methoden für Meteorologen 
und Geowissenschaftler, 98. Stuttgart 

Assessment Simple test for linear trends; 
weak power 
(http://www.kliwa.de/download/Verfahren.pdf) 

Example/publication  

 
 
http://www.socialresearchmethods.net/kb/Assets/images/expc
las1.gif 
 
 
 
Schableger (1996): Statistische Analysen klimatologischer 
Zeitreihen. Historical Social Research, 21, 3, 4-33. 
http://hsr-trans.zhsf.uni-
koeln.de/hsrretro/docs/artikel/hsr/hsr1996_395.pdf 
 
Kabas (2005): Das Klima in Südösterreich 1961-2004. 
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Wissenschaftlicher Bericht Nr.4-2005. 
http://www.uni-graz.at/igam7www_wcv-wissber-nr4-tkabas-
okt2005.pdf 

Contact/project Andreas Kochanowski 
Helmholtz-Zentrum Geesthacht, Climate Service Center  
andreas.kochanowski@hzg.de 
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5.5.2 Mann–Kendall test 
 
Superordinate objective (category) Significance tests 
Method Mann–Kendall test 
Description + literature Distribution-free trend test, which considers the positive or 

negative course of successive values 
Useful for (parameter, time resolution) In principle, precipitation (at all durations), precipitation 

indexes and temperature 
Requirements for application Sample size at least 10 
Result/interpretation Statements about a change of a parameter with time possible, 

which are accompanied by a significance value. 
Assessment Changes can be assessed via the significance or, relatively, 

via comparing several results (e.g., several precipitation 
measurement stations). This test does not inform about the 
magnitude of change (e.g., mm per year). 

Example/publication ExUS – Studie des Landes NRW (LANUV NRW) 
Contact/project Markus Qirmbach 

dr. papadakis GmbH, Hattingen 
M.Quirmbach@drpapadakis.de  
KLIMZUG project DYNAKLIM, ExUS 
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5.5.3 Cox–Lewis test 
 
Superordinate objective (category) Significance tests 
Method Cox–Lewis test 
Description + literature The Cox–Lewis test belongs to the area of extreme value 

analysis (Section 0). It concerns the time-dependent 
occurrence rate λ(T), where T is time, for an inhomogeneous 
Poisson point process (Section 5.7.4.3). 
 
The null hypothesis tested is based on a logistic model for 
λ(T) and is given by H0: “λ(T) is constant.” The statistic U to 
test this (Cox and Lewis 1966) is given by 
 

 
 
where j is an index, m is the number of extreme events, Tout is 
the date of an event, n is the total sample size, and [T(1); 
T(n)] is the observation interval. It can be shown that under 
H0, U becomes with increasing m rapidly standard normally 
distributed in shape, which allows a simple calculation of the 
P-value. 
 
Cox DR, Lewis PAW (1966) The Statistical Analysis of Series 
of Events. Methuen, London, 285 pp. 

Useful for (parameter, time resolution) Any parameter at any time resolution. 
 

Requirements for application Independent event dates. 
Result/interpretation Significance of a hypothesis test (which guides you whether 

or not to accept the null hypothesis). 
Assessment Simple test. Monte Carlo experiments (Mudelsee 2010) have 

shown the superiority (power) of the Cox–Lewis test over the 
Mann–Kendall test (Section 5.5.2) for studying 
nonstationarities in the occurrence of extremes. 

Example/publication The Cox–Lewis test was employed by Mudelsee et al. (2003) 
to confirm trends in occurrence of extreme river floods (see 
also Section 5.7.4.3). 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical 
Statistical and Bootstrap Methods. Springer, Dordrecht, 474 
pp. 
Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No 
upward trends in the occurrence of extreme floods in central 
Europe. Nature 425:166–169. 

Contact/project Manfred Mudelsee 
Climate Risk Analysis, Hannover, Germany; 
mudelsee@climate-risk-analyis.com 
www.climate-risk-analysis.com 
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5.5.4 Kolmogorov–Smirnov test 
 
Superordinate objective (category) Significance tests 
Method Kolmogorov–Smirnov test 
Description + literature The Kolmogorov–Smirnov test is a hypothesis test that 

compares an empirical probability distribution function Sn(x) with 
a specified theoretical probability distribution function P(x), the 
null hypothesis being that P(x) is the true, data-generating 
distribution. 
 
von Storch and Zwiers (1999): Statistical Analysis in Climate 
Research, Cambridge University Press. 

Useful for (parameter, time 
resolution) 

Any parameter at any time resolution (e.g., hydrographical or 
meteorological data). 

Requirements for application Data from independent and identically distributed random 
variables with a continuous distribution S(x). 

Result/interpretation The Kolmogorov–Smirnov test statistic, D, is given by the 
maximum absolute difference between the empirical and the 
specified distribution function, 
 
D = max|Sn(x) – P(x)|, for all –∞ < x < +∞. 
 
The null hypothesis, that P(x) is the correct distribution function, 
is rejected when D assumes a large value. For large enough 
samples sizes, n, it can be shown that 
 
prob(Dn(X1, …, Xn) > 1.36/√n) ≈ 0.05. 
 
Under the null hypothesis, deviations larger than 1.36/√n occur 
with a probability of about 0.05. 

Assessment The Kolmogorov–Smirnov test is easy to use and implemented 
in many software packages. 

Example/publication An illustrative example (in German): 
Jürgen Lehn und Helmut Wegmann (2004): Einführung in die 
Statistik, 4. Auflage, Teubner, p. 98–105. 
 
In English with graphical illustration and Fortran code: 
Press, W. H., S.A. Teukolsky, W.T. Vettering und B.P. Flannery 
(1992): Numerical recipes in Fortran 77, Cambridge University 
Press, p. 617–622. 

Contact/project Katharina Bülow, KLIWAS, Bundesamt für Seeschifffahrt und 
Hydrographie, katharina.buelow@bsh.de 

Software 
 

The Fortran code implementing the Kolmogorov–Smirnov test is 
short and accessible; it has been transferred to and used in 
other computing environments (e.g., Matlab, R). 
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5.5.5 Bootstrap hypothesis test 
 
Superordinate objective (category) Significance tests 
Method Bootstrap hypothesis test 
Description + literature Bootstrapping is a resampling method. On basis of a single 

sample, the test is repeated on parametrically or 
nonparametrically obtained resamples, and a distribution of the 
test statistic determined (null distribution) 
Ususally the test statistic obtained on the sample is compared 
with the null distribution. This leads to the test significance by 
comparing the sample-statistic with quantiles of the null 
distribution. 
 
Climate Time Series Analysis, Mudelsee, 2010, pp 91-94 

Useful for (parameter, time 
resolution) 

You use bootstrap methods when the theoretical distribution of 
the statistic of interest is unknown or if no parametric method is 
available. 

Requirements for application Determination of the null distribution depends on the problem at 
hand. 
It is important that the determination of the null distribution has to 
preserve the original properties of the data generating process 
(e.g., autocorrelation). For that aim, bootstrap adaptations, such 
as block bootstrap resampling, can be employed. 

Result/interpretation Significance of a hypothesis test (which guides you whether or 
not to accept the null hypothesis). 

Assessment On the one hand, this method delivers results that are 
independent of strong assumptions (positive aspect), but the 
implementation and application may be difficult (negative). 
Depending on concept of the bootstrap method and the sample 
size, this method may be rather computing-intensive. 

Example/publication Signifikance test of correlations 
Contact/project Oliver Krüger 

Helmholtz-Zentrum Geesthacht 
Institut für Küstenforschung 
Oliver.krueger@hzg.de 
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5.5.6 Parametrical z- test  
 
Superordinate objective (category) Significance tests 
Method Parametrical significance test for large sample size (z-Test) 
Description + literature Parametrical tests (e.g. z-, t- and F-tests) are used for statistical 

hypothesis testing under the assumption that the variable of 
interest is e.g. normally distributed. Hypothesis tests can 
therefore be used for testing the significance of differences of 
e.g. averages, frequencies of occurrence, variances etc. from 
two samples. The z- and t-test are recommended for testing the 
significance of differences of averages and frequencies of 
occurrence, meanwhile the F-test is suitable for testing of 
variances. All parametrical significance tests are limited to a 
certain error level (or significance level). If the test statistic is 
equal or higher than a critical test value, the null hypothesis 
(stating that there is no significant difference between the two 
samples) is rejected and the alternative hypothesis is being 
accepted. The following general steps are recommended for a 
parametrical significance test: 
a) Set up the null (H0) and alternative hypothesis (H1) 
b) Selection of test statistic 
c) Definition of significance (error) level  
d) Calculation of test statistic and decision on the     
            acceptance or rejection of the null hypothesis (H0) 
 
References (Selection): 
BUTLER,C. (1985): Statistics in Linguistics. Web-Edition, 
http://www.uwe.ac.uk/hlss/llas/statistics-in-
linguistics/bkindex.shtml (zuletzt abgerufen am 27.06.2013), 
University of West England, Bristol. 

Useful for (parameter, time 
resolution) 

Any parameter at any time resolution, e.g. sea-state parameters 
(wave heights) or meteorological parameters (wind velocities) 

Requirements for application The data tested (e.g. differences of frequencies of occurrence) 
have be normally distributed. Independent and large samples 
(number of elements n>30). 

Result/interpretation Decision of the hypothesis test (rejection or acceptance of the 
null hypothesis) and of the significance of differences between 
e.g. averages or frequencies of occurrence. 

Assessment Simple method for a classical significance test even if the 
assumptions are not fulfilled or tested. One disadvantage of the 
test is that it does not give any information about the strength of 
the significance of the difference. The significance of difference 
is easy to proof if the data has a small standard error (e.g. small 
standard deviation and/or large sample size) which is often the 
case when testing numerical climate model results. 

Example/publication Application of the z-Test for the testing of the significance of the 
difference between two frequencies of occurrence pA and pB: 
a) Set up the null (H0) and alternative hypothesis (H1) 

 
 
b) Calculation of the empirical z-value 
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c) Definition of significance (error) level  
 
d) Calculation of critical z-value (see Table of the Normal 
distribution) and decision on the acceptance or rejection of the 
null hypothesis (H0) 

 
 
Example: 
Statistical assessment of the relative changes of the frequencies 
of occurrence (∆p[%] on the left axis) of calculated significant 
wave heights (Hs[m] on the bottom axis) near Warnemünde for 
two future scenarios 2050 (2001-2050) & 2100 (2071-2100) 
based on  Cosmo-CLM model results for the IPCC emission 
scenarios A1B and B1 compared to actual conditions (C20, 
reference period 1971-2000). 
 

 
Interpretation of Results: 
Within the green highlighted background of the plot, the relative 
changes of the frequencies for Hs<0.5m and 0.75m≤Hs<2.25m 
are supposed to be statistical significant at an error level of 0.05 
for both scenarios 2050 and 2100. For the wave heights marked 
with the red highlighted background no statistical significance 
was found.  

Contact/project Norman Dreier, Hamburg Technical University, Institute of River 
and Coastal Engineering, norman.dreier@uni-rostock.de  

Christian Schlamkow, Geotechnics und Coastal Engineering, 
University of Rostock, christian.schlamkow@uni-rostock.de  
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5.6 Regionalisation 
 
Refining the spatial information of coarse-resolution global climate models output is called 
downscaling. Two downscaling approaches exist, via nested regional climate models and via 
statistical models between the global climate model output and high-resolution observations. 
The results of regional climate models often are needed in a higher resolution for impact 
models. In this chapter two methods of a statistical downscaling are presented (5.6.1.1 and 
5.6.1.2). The presented method (Section 5.6.1.1) illustrates statistical downscaling with linear 
models. 
 
Suppose that you have data values of a variable at some points in a space of a certain 
dimension, and you wish to know the values at the other points. The mathematical 
techniques to obtain these other values are called interpolation techniques; there may exist 
several techniques for a single problem. 
 
The methods presented here deal with the two-dimensional geographical space (longitude–
latitude), defining the field of geostatistics. These methods are of high relevance to the 
analysis of spatial climate model output. 
 
The simplest method, also in the two-dimensional setting, is linear interpolation (Section 
5.6.2). Interpolation can be seen as an estimation problem based on data, and you may 
adopt a weighting of the contribution of the data points to the estimation that is inversely 
proportional to the distance between the point of interest and a data point (Sections 5.6.2.2 
and 5.6.2.3). The interpolated curve (e.g., in the two-dimensional plane) may be subjected to 
constraints regarding its differentiability, which leads to spline interpolation (Section 5.6.2.4). 
Finally, there exists the advanced technique of kriging, which takes spatial dependences into 
account (Section 5.6.2.5). 
 
Further reading. The two reports from the IPCC (Christensen et al. 2007) and the 
ENSEMBLES project (van der Linden and Mitchell 2009) are comprehensive and accessible; 
they serve as good starting points. An easily accessible textbook on interpolation and 
geostatistics from a geological perspective is by Davis (1986). The more thorough (but still 
readable) statistical perspective is given by Diggle and Ribeiro (2007) and Cressie and Wikle 
(2011). 
 
Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-
T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, 
Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Marquis 
M, Averyt K, Tignor MMB, Miller HLeR Jr, Chen Z (Eds.) Climate Change 2007: The Physical 
Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 847–
940. 
 
Cressie N, Wikle CK (2011) Statistics for Spatio-Temporal Data. Wiley, Hoboken, NJ, 588 
pp. 
 
Davis JC (1986) Statistics and Data Analysis in Geology. 2 edn., Wiley, New York., 646 pp. 
 
Diggle PJ, Ribeiro Jr PJ (2007) Model-based Geostatistics. Springer, New York, 228 pp. 
 
van der Linden P, Mitchell JFB (Eds.) ENSEMBLES: Climate change and its impacts at 
seasonal, decadal and centennial timescales. Met Office Hadley Centre, Exeter, 160 pp. 
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5.6.1 Downscaling 

5.6.1.1 Statistical downscaling of climate projections by means of linear statistical 
models 

Superordinate objective 
(category) 

Regionalisation (Downscaling)  

Method Statistical downscaling of climate projections by means of linear 
statistical models 

Description + literature A statistical model for some target variable is constructed. This is 
based on the statistical relationship between the target variable 
(response) and meteorological variables (predictors) that are 
independent of the target variable. The model parameters can be 
estimated by means of multivariate linear regression. For that 
purpose, several methods exist (e.g., generalized least squares). 
The database consists in the measured variables. For determining 
the future values of the target variable, the independent 
meteorological variables are determined by means of climate 
models. Subsequently, these meteorological values are plugged in 
into the statistical model to determine the future target variable and, 
for example, changes in that variable that are due to climate 
changes. 

Useful for (parameter, time 
resolution) 

Heat-island intensity, air quality, mortality 

Requirements for application Existence of a statistical relationship between target and 
independent variables; it is assumed that this relationship continues 
also in a future climate, which needs not be fulfilled. Model 
parameters must be estimated using observational data and should, 
if possible, also be tested. 

Result/interpretation Result is a statistical model for a target variable. Plugging in climate 
model data into the statistical-model equations, the change in the 
target variable due to climate changes can be determined. Since 
the statistical model can only partly describe the behaviour of the 
target variable, the climate-change signals should be assessed with 
caution. 

Assessment  
Example/publication Hoffmann et al. (2011) [urban heat island, Hamburg] 

Muthers et al. (2010) [mortality, Vienna] 
Wilby (2008) [urban heat island and mortality, London] 

Contact/project Peter Hoffmann 
Universität Hamburg, Meteorologisches Institut 
peter.hoffmann@zmaw.de 
KLIMZUG NORD 

 
Hoffmann P., Krueger O., Schlünzen K.H. (2011): A statistical model for the urban heat 
island and its application to a climate change scenario. International Journal of Climatology 
(accepted) 
Muthers, S.; Matzarakis, A.; Koch, E (2010). Climate Change and Mortality in Vienna—A 
Human Biometeorological Analysis Based on Regional Climate Modeling. Int. J. Environ. 
Res. Public Health, 7, 2965-2977 
 
Wilby, R.L. (2008): Constructing climate change scenarios of urban heat island intensity and 
air quality. Environment and Planning B: Planning and Design, 35, 902-919. 
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5.6.1.2 Statistical downscaling of precipitation 
 
 
Superordinate objective 
(category) 

Regionalisation (Statistical downscaling of precipitation) 

Method Analogue method/ resampling of precipitation data from regional 
climate models using radar data  
 

Description + literature Empirical statistical downscaling method: Based on daily amounts 
of precipitation (spatial averages over RCM gridboxes) and 
objective weather classes (DWD), days with measurement data are 
chosen from an observation period wich behave ‘similar’ – 
concerning precipitation and objective weather class - to the RCM-
data. The high-resolution observation data of the selected days are 
composed to synthetic time series. These time series are section-
wise composed of observations which are consistent in space and 
time. However, transitions from one section to another are not 
consistent, therefore longer time events cannot be reproduced. 
In order to enlarge the database in the observation period, events 
are shifted within the selected region. Thus, small-scale orographic 
effects are neglected. Individual high model events without 
adequate similar events in the observation period may be replaced 
by lower events enhanced by a factor. 
 

 
 

Useful for 
(parameter, time resolution)  

Precipitation data from regional climate models, spatial resolution 
e.g. 0.2°x0.2°, daily sums 
 

Requirements for application  Observation data with high spatial and temporal resolution, e.g. 
corrected and adjusted radar data of at least 10 years (resolution 5 
min, 1 km x 1 km). 
 

Result / Interpretation  Time series of precipitation amounts or events with high spatial and 
temporal resolution. Aggregated to gridbox scale and one day, the 
values correspond to the RCM values. 
 

Assessment Empirical statistical downscaling for predefined event duration 
(here: < 1 d) produces precipitation data at appropriate scales. The 
data can directly be used as input for hydrological models. 
The example shows that realistic extreme values (return period: 5 
y) as compared to observations are produced. Precipitation trends 
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of the resulting data are mainly determined by trends in the RCM 
daily data.    
 
A previous bias correction of the daily RCM data is recommended  
(Piani et al., 2010, see method 5.4.2). 
 

Example / publication Jasper-Tönnies, A., Einfalt, T., Quirmbach, M., Jessen, M. (2012). 
Statistical downscaling of CLM precipitation using adjusted radar 
data and objective weather types. 9th International Workshop on 
Precipitation in Urban Areas. 2012, St. Moritz, Switzerland. 

Example: downscaling of precipitation data of CLM-model for three 
catchment areas in North Rhine-Westphalia (Germany).  
 

  
 
Validation: extreme precipitation [mm] for duration 1h, return period 
5 years in the reference period (1961-1990) from downscaling 
results (3 catchments, 2 CLM runs), 28 quality-controlled rain 
gauge stations and rain gauge results multiplied by 0.84 to account 
for the different characteristic between radar and rain gauge data. 
 

Contact / project  Alrun Jasper-Tönnies (jasper-toennies@hydrometeo.de), Projekt 
dynaklim 
Thomas Einfalt (einfalt@hydrometeo.de), Projekt dynaklim 

Software (if possible) 
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5.6.2 Interpolation 

5.6.2.1 Two-dimensional linear interpolation in a grid model 
 
Superordinate objective (category) Regionalisation (Interpolation) 
Method Bilinear interpolation on a grid model 
Description + literature The two-dimensional bilinear interpolation (using 4 nodes) is a 

widely used interpolation method in digital image processing and 
analysis. Other well-known methods are e.g. the Nearest-
Neighbor- (using one node) or the two-dimensional cubic 
interpolation (using 16 nodes). For the bilinear interpolation 
method two linear interpolations are carried out consecutively. 
The calculation effort of the method depends on the number of 
nodes used for interpolation. The number of nodes can be 
reduced e.g. by linear interpolation using triangles (3 nodes) on 
a regular grid. For more details see (in German only): 
Rosiuta, A. A. (2003.) Minimierung der Stützstellen zur 
Interpolation in dreidimensionalen Texturen, Studienarbeit, 
Fakultät für Informatik, Institut für Visualisierung und Interaktive 
Systeme, Universität Stuttgart, http://elib.uni-
stuttgart.de/opus/volltexte/2003/1451/ 
 
For the space between two nodes of a grid (column index j, row 
index i), the values are determined by means of linear 
interpolation and going into one direction (either j or i). 
Subsequently, the between-values are determined by the same 
means and going into the other direction (either i or j). 
Special case: Halving the grid size yields interpolated values 
that correspond to the arithmetic mean of neighbouring values. 
 
In the case of linear interpolation of multiple points within one 
mesh of the grid, the interpolation equations must be solved 
several times. For an time efficient bilinear interpolation of 
multiple points optimized algorithms exist. For more details see 
(in German only): 
Behr, F. J. & Lutz, S. (1989): Ein schneller Algorithmus zur 
bilinearen Interpolation in Ankerpunktnetzen. Zeitschrift für 
Photogrammetrie und Fernerkundung, Bildmessung und 
Luftbildwesen, Heft 6, 57/1989, 222-229. 
 
References (Selection): 
Streit, U.: Vorlesungen zur Geoinformatik, Kap. 7.4.4  
Zweidimensionale räumliche Interpolation im Rastermodell, 
Institut für Geoinformatik der Universität Münster, 
http://ifgivor.uni-
muenster.de/vorlesungen/Geoinformatik/kap/kap7/k07_4.htm  
 
Umbaugh S. E. (2010). Digital Image Processing and Analysis: 
Human and Computer Vision Applications with Cviptools. 2nd 
edition, Crc Pr Inc, 2010. 977p. 

Useful for (parameter, time 
resolution) 

All parameters like e.g. meteorological data (wind vector 
components, temperature etc.) or geographical data (marine 
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bathymetry) 
Requirements for application Existence of two-dimensional regular grid, absence of strong 

(nonlinear) changes of the variable within the interpolated space 
(e.g. for bathymetry the absence of steep faces or ledges). 

Result/interpretation A spatially refined (alternatively: coarsened) grid of the 
investigated variable results. Due to the interpolation, the refined 
grid allows a better rendering, but it does not provide more 
information. Method is further used to project data on varying 
grid sizes for utilization in numerical simulations. 

Assessment Straightforward and fast computation (basic arithmetic’s). At the 
grid boundary, only one interpolation direction exists; this is, 
however, no disadvantage. 

Example/Publication:  
 
Bathymetry of SW Baltic Sea (data source: IOW), two-dimensional interpolation from 75 columns x 
73 rows to 150 columns x 146 rows 
 

           
 
Interpretation of Results: 
After the two-dimensional linear interpolation the bathymetry is optically smoothed (Fig. b), with less 
sharp contours (edges) compared to Fig. a. 
Contact/project Norman Dreier, Hamburg Technical University, Institute of River 

and Coastal Engineering, norman.dreier@uni-rostock.de 

Christian Schlamkow, Geotechnics und Coastal Engineering, 
University of Rostock, christian.schlamkow@uni-rostock.de 

 
 
 
 
 

 
 
 
 
 
 

lat [°] 

lon [°] 

a) b) 
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5.6.2.2 Inverse distance weighting 
 
Superordinate objective (category) Regionalisation (Interpolation) 
Method Inverse distance weighting (IDW) 
Description + literature Estimation of values at points that are between points with 

known (measured) values. Each measurement value is weighted 
according to its distance from the analysed point; the closer the 
point, the larger the weight. The interpolation can be done by 
adopting a search radius or employing a constant number of 
nearest neighbours. 
 
 
 
 
     wi = Weight attached to point 
     di  = Distance from z(x) 
 
 
 
 
 
 
     z(x) = point in space to be interpolated 
        zi = known value (e.g., precipitation) at point i 
       wi = Weight attached to point 
 
Bonham-Carter, G. F. (1994): Geographic Information Systems 
for Geoscientists: Modeling with GIS. Pergamon/Elsevier 
Science Publications. 398 S. 
Bill, R. & D. Fritsch (1991): Grundlagen der Geo-
Informationssysteme. Wichmann, Karlsruhe; Bd. 1: Hardware, 
Software und Daten. 429 S. 
Hartkamp et al. (1999): Interpolation Techniques for Climate 
Variables. Geographic Information Systems. Series 99-01. 

Useful for (parameter, time 
resolution) 

Geo-referenced point information; applicable to various 
physical–chemical parameters: temperature, pH, electrical 
conductivity, water components. 

Requirements for application Sufficient sample size (also outside of region of interest, for 
interpolating boundary regions). Since the method takes into 
account just the distance between measurement points, general 
properties (e.g., water-impermeable disturbances, water divides, 
aquifer variations) have to be taken into account prior to the 
analysis. The distances between measurement points should 
not vary too strongly to prevent occurrence of “bulls-eye” 
structures. 

Result/interpretation Interpolated areal distribution. This allows a simple presentation 
of measurement values without the need to take heterogenous 
influences into account. Extreme values are not smoothed away; 
hence, their spatial features can be inspected by eye. 

Assessment Simple and fast method that allows inference of heterogeneties 
(e.g., different water types, material inputs). A spatial 
assessment can be achieved even when the data situation dows 
not allow sophisticated interpolation methods. However, no 
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directional weighting can be performed. 
Example/publication The figure below shows regional distributions of contaminants 

(so-called contaminant plumes) on basis of a measurement grid 
(left panel) and an “ordinary” irregular grid (right panel). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BENDER, S. (2007): Die Aussageunschärfe bei der Verwendung 
heterogener Datensätze im Rahmen wasserwirtschaftlicher 
Fragestellungen. – Bochumer Geowissenschaftliche Arbeiten, 
Heft 8, 99 S. 

Contact/project Steffen Bender 
Helmholtz-Zentrum Geesthacht, Climate Service Center 
Steffen.Bender@hzg.de 
Andreas Kochanowski 
andreas_kochanowski@gmx.de,  

Software Surfer (Golden Software, http://www.goldensoftware.com) 
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5.6.2.3 Linear regression with interpolation of residuals using inverse distance 
weighting 

 
Superordinate objective (category) Regionalisation (Interpolation) 
Method Linear regression with interpolation of residuals using IDW 
Description + literature Utilizing a digital elevation model, for each grid box the 

estimate (result field A) is calculated by means of a elevation-
regression that is valid for the analysed time interval. The 
elevation-regression follows from the measurement values at 
stations and the associated elevation. 
 
To enhance the accuracy of the result (bias), the residuals 
(difference between measurement value and result field A per 
grid box) are interpolated by means of IDW (result field B). 
The resulting estimate is obtained by adding result fields A 
and B for corresponding grid boxes. 

Useful for (parameter, time resolution) Various climate elements (e.g., temperature, precipitation, 
irradiance) 

Requirements for application Dense network of stations and availability of digital elevation 
model 

Result/interpretation Grids at the same resolution as of the digital elevation model 
for the station-based climate elements 

Assessment An advantage is that spatial-distribution-relevant 
dependences of climate elements can be considered (e.g. 
dependence of temperature on elevation). 

Example/publication Bernhofer et al. (2009, 2011) 

Contact/project Johannes Franke  
Technische Universität Dresden 
johannes.franke@tu-dresden.de 
KLIMZUG project: REGKLAM 

 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-
Verlag Dresden 
 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2009): Das Klima in der REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 1, Rhombos-
Verlag Dresden 
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5.6.2.4 Splines 
 
Superordinate objective (category) Regionalisation (Interpolation) 
Method Splines 
Description + literature Construction of a surface with minimal curvature; 

interpolation by means of a series of different polynomials 
(often 3rd and higher order) for the space between data points 

 
Burrough &. McDonnell (2004): Principles of Geographical 
Information Systems. Oxford. 
 
Schumacher (20073): Spline Functions: Basic Theory. New 
York. 

Useful for (parameter, time resolution) Point data in space 
Requirements for application Sufficient sample size (also outside of region of interest, for 

interpolating boundary regions) 
 
W. Tobler „Erstes Gesetz der Geographie“  
(see “Inverse distance weighting (IDW)”) 

Result/interpretation Change of a data value at one node has only local effects; 
small-scale properties are preserved owing to the segmented 
calculation (between nodes); 
problems may arise for sharp transitions (e.g., temperature 
inversion, rain-shadow effects); 
validation methods via “jackknife” or “cross validation” 

Assessment Difficult to make assessment of quality of interpolation 
Example/publication Splines with 8 nodes 

 

 
Example calculation: 
http://www.arndt-
bruenner.de/mathe/scripts/kubspline.htm#rechner 
gives several variations (e.g., “Thin Plate Spline”, cubic 
splines); 
is used for producing digital elevation models 
 
 
Tait et al. (2006): Thin plate smoothing spline interpolation of 
daily rainfall for New Zealand using a climatological rainfall 
surface. In: International Journal of Climatology, Vol. 26, 
2097-2115.  
 
Hong et al. (2005): Spatial interpolation of monthly mean 
climate data for china. 
In: International Journal of Climatology, Vol. 25, 1369-1379. 

Contact/project Andreas Kochanowski 
Helmholtz-Zentrum Geesthacht, Climate Service Center  
andreas.kochanowski@hzg.de 
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5.6.2.5 Kriging 
 
Superordinate objective (category) Regionalisation (Interpolation) 
Method Kriging 
Description + literature Geostatistical method on basis of spatial measurement data; 

least-squares estimation. The weighting is performed not only 
via distance, also the spatial distribution and anisotropies can be 
taken into account. 
 
Kriging delivers the semivariance, which quantifies the degree of 
spatial dependence between samples. If you determine the 
semivariances for different samples, you can plot this curve as 
the semivariogram:  
 

 

γ(h): semivariance between xi and xi+h 
h: distance between xi and xi+h 
N(h): number of data pairs with distance h 
Z(xi): measurement value at point xi 
Z(xi+h): measurement value at point xi+h 
 
 

 
 
 
From: www.spatialanalysisonline.com 
 
Above figure shows the fitting of a theoretical variogram curve to 
the empirical variogram points. Descriptive properties are: (1) sill 
(variance of measurement values), (2) range (over which the 
interpolation can be meaningfully performed) and (3) nugget 
effect (small-scale variation from heterogeneities). 
 
M.-T. Schafmeister(1999): Geostatistik für die hydrogeologische 
Praxis, 172 S. 
Webster &. Oliver (2007²): Geostatistics for Environmental 
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Scientists. Chichester. 
Stein (1999): Interpolation of Spatial Data: some theory for 
kriging. New York. 

Useful for (parameter, time 
resolution) 

Geo-referenced point information; applicable to various 
physical–chemical parameters: temperature, pH, electrical 
conductivity, water components. 

Requirements for application Sufficient sample size (also outside of region of interest, for 
interpolating boundary regions). 

Result/interpretation The semivariogram delivers information about the spatial 
relation of measurement points. By utilizing search ellipses in 
space you can perform an analysis of spatial directions 
(anisotropy). 

Assessment Prior knowledge about the form of the spatial distribution of a 
variable can be used in the method; this optimizes the 
estimation and yields minimal estimation variances. You can 
take into account spatial anisotropies. 

Example/publication The figure below shows regional distributions of contaminants 
(so-called contaminant plumes) on basis of a measurement grid 
(left panel) and an “ordinary” irregular grid (right panel). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BENDER, S. (2007): Die Aussageunschärfe bei der Verwendung 
heterogener Datensätze im Rahmen wasserwirtschaftlicher 
Fragestellungen. – Bochumer Geowissenschaftliche Arbeiten, 
Heft 8, 99 S. 

Contact/project Steffen Bender 
Helmholtz-Zentrum Geesthacht, Climate Service Center 
Steffen.Bender@hzg.de,  
Andreas Kochanowski 
Andreas_kochanowski@gmx.de 

Software Surfer (Golden Software, http://www.goldensoftware.com) 
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5.6.2.6 Thiessen Polygons 
 
Superordinate objective (category) Regionalisation (Interpolation) 
Method Thiessen polygons (also named after Voronoi or Dirichlet) 
Description + literature Simple interpolation method to plot geo-referenced 

measurement data. The basic assumption is that data values 
agree the stronger with each other the closer their measurement 
points are located. 
 
The full area is tesselated into polygon regions containing one 
measurement point by means of a construction via the 
perpendicular bisectors. All locations within a constructed 
polygon are closer to the corresponding measurement point than 
to any other measurement point.  
 

 
 
 
 
Ai: area of a Thiessen polygon around point i, 
AT: full area size.  
 
R. Klein (2005): Algorithmische Geometrie, Grundlagen, 
Methoden, Anwendungen, Springer, 426 S. 

Useful for (parameter, time 
resolution) 

Suitable method to present spatial distributions of discrete data 
and nominal (yes/no) data (e.g., assigning representative areas 
to precipitation gauges in plain areas). 

Requirements for application Spatial measurement data. Note that variables possibly 
influencing measurements are not taken into account (e.g., 
when assigning representative areas to precipitation gauges, 
topographic effects are ignored). 

Result/interpretation Weighted interpolation that takes into account irregularly 
distributed measurement stations. 

Assessment The method does not approximate observed measurement data 
well. Since at the polygon boundaries there may appear 
considerable jumps, it is not possible to describe continuous 
changes. 

Example/publication The figure below shows (a) locations and values of precipitation 
gauges and (b) the spatial distribution of precipitation estimated 
by means of Thiessen polygons (Mair and Fares 2011). 
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Mair, A. and Fares, A. (2011): Comparison of Rainfall 
Interpolation Methods in a Mountainous Region of a Tropical 
Island. – Journal of Hydrologic Engineering, 371–383. 

Contact/project Steffen Bender 
Helmholtz-Zentrum Geesthacht, Climate Service Center 
Steffen.Bender@hzg.de 

Software Surfer (Golden Software, http://www.goldensoftware.com) 
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5.7 Extreme value analysis 
 
Consider that you are interested in the extremely large values of a climate time series 
simulated by a climate model. In principle, you may select these extremes in two ways. One 
is to take from a certain block of time the maximum and then analyse all block maxima 
(Section 5.7.1.1). The other way is to set a threshold and then analyse all peaks above that 
threshold. Section 5.7.1.2 explains the peaks over threshold (POT) approach for the case of 
a time-constant threshold, while Section 5.7.1.3 allows for a time-dependent threshold, a 
case that should also be considered in the analysis of nonstationary climate processes. 
 
Block maxima follow, under some mathematical assumptions, a Generalized Extreme Value 
(GEV) distribution, while peaks-over-threshold (POT) data follow, under similar mathematical 
assumptions, a Generalized Pareto distribution. 
 
Evidently, the same analytical machinery may also be applied to analysing extremely small 
values of a climate series, for example, when you are interested not in heavy rainfall events 
but in droughts. 
 
The majority of papers on climate extremes tend to focus on block maxima and the GEV 
distribution, and also the presented methods (Sections 5.7.2 and 5.7.4) follow that tendency. 
However, there are also examples on the POT approach (Sections 5.7.3). 
 
In the context of climate change, it is important to move from stationary to nonstationary 
(time-dependent) statistical models, since with climate changes also the risk of extremes 
may be associated. Nonstationary extreme value analysis with time-dependent parameters 
of the GEV distribution is illustrated in Section 5.7.4.2. A robust alternative to the 
nonstationary GEV model is the description via an inhomogeneous Poisson point process 
(Section 5.7.4.3). 
 
A covariate, Y, bears information about the extremal part of the climate variable of interest, 
X. Simulating Y by means of a climate model can thus improve risk analysis on variable X 
(Section 5.7.4.6). Of high socioeconomical relevance are joint occurrences of extremes in 
two or more variables (e.g., high coastal water level and strong winds), which are 
mathematically–theoretically difficult to analyse: copulas (Section 5.7.4.4) may be one option 
to proceed here. 
 
Further reading. A short and readable book (Coles 2001) treats the GEV and the 
Generalized Pareto distributions, their fitting to data and diagnostic plots; it also studies the 
nonstationary model variants. Theoretical concepts are described with mathematical rigour 
by Leadbetter et al. (1983) and Embrechts et al. (1997). Chapter 6 in the book by Mudelsee 
(2010) deals with stationary and nonstationary extreme value analysis; it covers also the 
Poisson point process estimation from a practical, analytical standpoint and gives examples. 
 
Coles S (2001) An Introduction to Statistical Modeling of Extreme Values. Springer, London, 
208 pp. 
 
Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling Extremal Events for Insurance and 
Finance. Springer, Berlin, 648 pp. 
 
Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and Related Properties of Random 
Sequences and Processes. Springer, New York, 336 pp. 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap 
Methods. Springer, Dordrecht, 474 pp. 
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5.7.1 Selection method 

5.7.1.1 Block maxima 
 
Superordinate objective (category) Extreme value analysis 
Method Block Maxima 
Description + literature Method for the selection of a sample for the extreme value 

analysis of time series. The method takes maximum values (e.g. 
years, months or weeks) from defined time intervals (blocks) and 
combines these values to a sample. To the sample different 
extreme value distributions can be fitted like e.g. the generalized 
extreme value distribution (GEV), Log-Normal-, Gumbel- or 
Weibull distribution function. 
 
The Approach can be extended when taking into account 
multiple (r-) maximum values within one interval (block). 
 
References (selection): 
Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling 
Extremal Events. Vol. 33 of Applications in Mathematics. 
Springer-Verlag, New York. 
 
Coles, S. (2001). An Introduction to Statistical Modelling of 
Extreme Values. Springer Series in Statistics. Springer Verlag, 
London, 2001, 208p. 
 
Soukissian, T.Η., Kalantzi, G. (2009). A new method for applying 
the r-largest maxima model for design sea-state prediction. 
International Journal of Offshore and Polar Engineering, Vol. 19, 
No. 3, September 2009, ISSN 1053-5381, 176–182. 

Useful for (parameter, time 
resolution) 

All parameters with constant temporal resolution. Longer time 
series allow using longer time intervals (less blocks) for 
determining the maxima like e.g. annual maxima. For shorter 
time series, it is recommended to use shorter time intervals 
(more blocks) like e.g. monthly maxima. 

Requirements for application Homogeneity, independence and representativeness of the data 
Result/interpretation Sample for extreme value analysis 
Assessment The fitting of the extreme value distribution function to the 

sample depends on the size of the used time interval (block) and 
the number of maxima of each block (e.g. total maxima or r-
largest maxima). One the one hand side, the uncertainty of the 
parameter estimation for the fitting is lower when using smaller 
time intervals (blocks) and a larger number of sample elements. 
But on the other hand side, the probability of specific extreme 
values can be over- or underestimated because some values of 
the sample might not be extreme values. Moreover one has to 
ensure that the elements of the sample are independent from 
each other, especially when using multiple (r-) maxima. Taking 
this into account, a minimum time period between to maxima 
can be defined within the selection procedure. 

Example/publication Annual maxima of water levels in the literature correspond per 
definition to block maxima, see e.g. 
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Deutsches Gewässerkundliches Jahrbuch (DGJ), Küstengebiet 
der Nordsee, Landesamt für Natur und Umwelt Schleswig-
Holstein, Flintbek, ISSN 0340-5184. (in German only) 
 
Deutsches Gewässerkundliches Jahrbuch (DGJ), Küstengebiet 
der Ostsee, Landesamt für Umwelt, Naturschutz und Geologie 
Mecklenburg-Vorpommern, Güstrow, ISSN 1434-2448. 
 
Further examples and analysis from financial economics can be 
found in: 
Woeste B.  (2010). Eine Anwendung der Block Maxima Methode 
im Risikomanagement. Diplomarbeit, Mathematisches Institut für 
Statistik, Fachbereich Mathematik und Informatik, Westfälische 
Wilhelms-Universität Münster. (in German only) 

Contact/project Dörte Salecker & Norman Dreier, Hamburg Technical University, 
Institute of River and Coastal Engineering 
doerte.salecker@tuhh.de , norman.dreier@tuhh.de 
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5.7.1.2 Peaks over threshold 
 
Superordinate objective (category) Extreme value analysis 

Method Peak over threshold (POT) 
Description + literature Method for the selection of a sample for extreme value analysis. 

The method takes maxima above a given threshold. The 
definition of the threshold depends on the problem analysed. 
Options to determine suitable thresholds are for example the 
mean excess plot or the Kolmogorov–Smirnov test (section 
5.5.4). To the obtained sample, different extreme value 
distributions like e.g. the Generalized Pareto- (GPD), Log-
Normal-, Gumber- or Weibull distribution can be fitted. 
 
References (Selection): 
Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling 
Extremal Events. Vol. 33 of Applications in Mathematics. 
Springer-Verlag, New York. 
 
Coles, S. (2001.) An Introduction to Statistical Modelling of 
Extreme Values. Springer Series in Statistics. Springer Verlag, 
London, 2001, 208p 

Useful for (parameter, time 
resolution) 

All parameters at constant temporal resolution 

Requirements for application Homogeneity, independence and representativeness of the data 
Result/interpretation Sample for extreme value analysis 
Assessment The challenge of the POT method consists in selecting the 

threshold. This corresponds to the challenge in selecting the 
time interval of the block-maxima method. Also for the POT 
method it is important to have an independent sample; for 
achieving this, you can additionally invoke a minimum time span 
between taken extreme events or a lower threshold. 

Example/publication An example for the utilization of the method for extreme value 
analysis of water levels can be found in section 5.7.4.5 
Generalized Pareto Distribution (GPD). 
Defining POT events on sea-state data has been done by: 
Kuratorium für Forschung im Küsteningenieurwesen (2002): Die 
Küste - EAK 2002: Empfehlungen für die Ausführung von 
Küstenschutzwerken, Bd. 65, Westholsteinische Verlagsanstalt 
Boyens und Co., Heide i. Holstein. S. 283. 
 
Van Vledder, G., Goda, Y., Hawkes, P. J., Mansard, E., Martin, 
M. J., Mathiesen, M., Peltier, E. and Thompson, E. 1993. A case 
study of extreme wave analysis: a comparative analysis. 
WAVES’93, pp. 978-992. 
 
Piscopia, R., Inghilesi, R., Panizzo, A., Corsini, S. and Franco, L. 
(2002): Analysis of 12-year wave measurements by the italian 
wave network. In: Smith, J. Mckee. COASTAL ENGINEERING 
2002: Solving Coastal Conundrums. Proceedings of the 28th 
International Conference, Cardiff, Wales, July 2002, pp 121-133. 

Contact/project Dörte Salecker & Norman Dreier, Hamburg Technical University, 
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Institute of River and Coastal Engineering 
doerte.salecker@tuhh.de , norman.dreier@tuhh.de 

 
 

 
 



 77 

5.7.1.3 Nonstationary peaks over threshold 
 
Superordinate objective 
(category) 

Extreme value analysis 

Method Nonstationary peaks over threshold 
Description + literature Selecting extremes in climatology may sometimes be done more 

realistically by allowing for a time-dependent “background,” on 
which a time-dependent variability acts. This nonstationary situation 
leads then naturally to a time-dependent threshold, in contrast to a 
stationary situation with a constant threshold (Section 5.7.1.2). 
 
The method should perform the estimation of the time-dependent 
background in a robust manner, that is, unaffected by the presence 
of the assumed extremes. Therefore you use the running median 
(calculated over the points inside a running window) for 
nonparametric background or trend estimation, and not the running 
mean. Analogously, you use the running median of absolute 
distances to the median (MAD), and not the running standard 
deviation for variability estimation. Cross-validation techniques offer 
a guide for selecting the number of window points by optimizing the 
tradeoff between bias and variance. 
 
Mudelsee M (2006) CLIM-X-DETECT: A Fortran 90 program for 
robust detection of extremes against a time-dependent background 
in climate records. Computers and Geosciences 32:141–144. 

Useful for (parameter, time 
resolution) 

All parameters at any temporal resolution. 
 
Note that high time resolution may result in a strong autocorrelation, 
which has to be considered in the selection of the number of window 
points (i.e., more window points have to be used compared to an 
autocorrelation-free situation). 

Requirements for application Homogeneity and representativeness of the data. In the case of 
autocorrelated data, the cross-validation guideline may be less 
informative and other numbers of window points have to be tried. 

Result/interpretation Sample for extreme value analysis (Generalized Pareto distribution, 
inhomogeneous Poisson process) 

Assessment The challenge of the nonstationary POT method consists in 
selecting the threshold and the number of window points. Cross-
validation guides may help, but it is mandatory to “play” with the 
data and study the sensitivity of the results in dependence of the 
selected analysis parameters (threshold, number of window points). 
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Example/publication  

 
 
The original paper (Mudelsee 2006) explains the method and 
describes the Fortran 90 software CLIM-X-DETECT. This analysis 
type has been applied to a number of climate change analyses, for 
example, on observed and modelled wildfires 1769–2100 (Girardin 
and Mudelsee 2008) or hurricane proxy data 1000–1900 from a lake 
sediment core (Besonen et al. 2008). 
 
Besonen MR, Bradley RS, Mudelsee M, Abbott MB, Francus P 
(2008) A 1,000-year, annually-resolved record of hurricane activity 
from Boston, Massachusetts. Geophysical Research Letters 
35:L14705 (doi:10.1029/2008GL033950). 
 
Girardin MP, Mudelsee M (2008) Past and future changes in 
Canadian boreal wildfire activity. Ecological Applications 18:391–
406. 
 
Mudelsee M (2010) Climate Time Series Analysis: Classical 
Statistical and Bootstrap Methods. Springer, Dordrecht, 474 pp. 

Contact/project Manfred Mudelsee 
Climate Risk Analysis, Hannover, Germany; 
mudelsee@climate-risk-analyis.com 
www.climate-risk-analysis.com 

 
 
 
 

 
 
 
 



 79 

5.7.2 Parameter estimation 

5.7.2.1 Fitting statistical extreme value distributions by means of maximum 
likelihood or the method of moments 

 
Superordinate objective (category) Extreme value analysis 
Method Fitting statistical extreme value distributions by means of 

maximum likelihood or the method of moments 
Description + literature Estimation of the distribution parameters of e.g. Generalized 

Extreme Value (GEV)-, Log-Normal-, Gumbel or Weibull 
distribution from a sample (see section 5.7.1.1 and 5.7.1.2 
selection Methods). 
 
Method of moments: 
The moments of the sample are equalised to the moments of the 
distribution function of interest. After transformation of the 
equation the estimation parameters of the distribution can be 
calculated. 
 
Maximum likelihood method: 
After setting up the likelihood respectively the log-likelihood 
function of the distribution function of interest, the first derivative 
of the estimation parameter is calculated and set equal to zero 
so that the maxima of the likelihood function can be calculated 
(first derivative test). 
 
Other methods for the estimation of distribution parameters are 
e.g. the method of probability weighted moments (PWM) or L-
moments (LM). 
 
References (Selection): 
Kuratorium für Forschung im Küsteningenieurwesen (2002): Die 
Küste - EAK 2002: Empfehlungen für die Ausführung von 
Küstenschutzwerken, Bd. 65, Westholsteinische Verlagsanstalt 
Boyens und Co., Heide i. Holstein. S. 285-291. 
 
Coles, S. (2001). An Introduction to Statistical Modelling of 
Extreme Values. Springer Series in Statistics. Springer 
Verlag, London, 2001, 208p. 
 
Plate E.-J.: Statistik und angewandete Wahrscheinlichkeitslehre 
für Bauingenieure, Ernst & Sohn Verlag für Architektur und 
technische Wissenschaften, Berlin, 1993, ISBN 3-433-01073-0, 
S.20-22. 
 
Carter, D. J. T. & Challenor, P.G. Methods of Fitting the Fisher-
Tippett Type 1 Extreme Value Distribution, Ocean Engineering 
(10), 1983, 191-199. 

Useful for (parameter, time 
resolution) 

Sample of extreme values, which have previously been 
determined by means of a selection method (see section 5.7.1 
Selection Methods). 

Requirements for application Homogeneity, independence and representativeness of the data 
Result/interpretation Estimated parameters of the distribution function of interest 
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Assessment The method of moments yields reliable estimates for distribution 
parameters, but it may lead for small sample sizes and skewed 
distributions to large estimation errors (e.g. bias). 
The maximum likelihood method yields small estimation errors 
of the distribution function. Often the calculation has to be 
performed numerically.  

Example/publication: 
 
Fitting of the Generalized Extreme Value (GEV) distribution (plotted with blue solid line) to a sample 
of annual block maxima of water levels (reference level null, near Warnemünde) using the maximum 
likelihood method for parameter estimation of the GEV distribution. Moreover the upper and lower 
0.95 confidence level are calculated (plotted with black solid lines). 

 
Contact/project Dörte Salecker & Norman Dreier, Hamburg Technical University, 

Institute of River and Coastal Engineering 
doerte.salecker@tuhh.de , norman.dreier@tuhh.de 
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5.7.2.2 R-largest combined with a GEV 
 
Superordinate objective (category) Extreme value analysis 

analysis of storm-surge water levels 
Method R-largest combined with a Generalized Extreme Value (GEV) 

distribution 
Description + literature Application of GEV on R data points from a block 

Useful for (parameter, time resolution) No restrictions 
Requirements for application (1) Independence of events, 

(2) the number (R) of maxima per block has to be predefined. 
Result/interpretation  
Assessment Straightforward application, 

no threshold has to be predefined. 
Example/publication Smith, Richard L.: Extreme value theory based on the r 

largest annual events, Journal of Hydrology 86(1-2), 27–43, 
1986 
 
Katz, Richard W, Parlange, Marc B, and Naveau, Philippe: 
Statistics of extremes in hydrology, Advances in Water 
Resources 25(8-12), 1287–1304, 2002 
 
Soares, C. G., and Scotto, M. G.: Application of the r largest-
order statistics for long-term predictions of significant wave 
height, Coastal Engineering 51(5-6), 387–394, 2004 

Contact/project Ulf Gräwe 
Leibniz Institute for Baltic Sea Research Warnemuende 
ulf.graewe@io-warnemuende.de 
KLIMZUG project RADOST 
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5.7.2.3 Goodness of fit between the empirical and theoretical extreme value 

distribution (modified Kolmogorov-Smirnov-Lilliefors test) 
 
Superordinate objective (category) Extreme value analysis 
Method Lilliefors test (modified K-S test) for the assessment of the 

goodness of fit between the empirical and theoretical extreme 
value distribution 

Description + literature The concept of the Lilliefors test is based on a modified K-S test 
(see 5.5.4 Kolmogorov-Smirnov test). It can be used in 
hypothesis testing to answer the question if the sample can be 
represented trough a fitted extreme value distribution to a certain 
error level. For the comparison of the test statistic, a critical 
modified value (KScrit, which depends on the significance level, 
error level, the number of elements and the shape parameter of 
the distribution) is used that can be obtained from Monte Carlo 
methods. For large difference values (D>KScrit) the null 
hypothesis, that the empirical distribution function corresponds 
to the extreme value distribution function, is rejected and the 
data cannot be represented by the extreme value distribution. 
 
Here the Lilliefors test is used to assess of the goodness of fit 
between the empirical distribution function (EDF) and different 
theoretical extreme value distributions (EVDs). For this purpose, 
difference values (e.g. the largest difference Dmax or the root 
mean square difference Drms) are calculated between the EDF 
and the fitted EVDs (e.g. Log-Normal, Gumbel and Weibull 
distribution). The EVD with the smallest D value is assessed to 
be the best estimator for the sample. 
 
 
 
 
Fn(x) : empirical distribution function (EDF) 
 
 
 
i: index of list of sorted elements from lowest value to highest 
value 
n: total number of elements 
F(x): theoretical, extreme value distribution function (EVD) 
 
References (Selection): 
Chu, Pao-Shin, Jianxin Wang, 1998: Modeling Return Periods of 
Tropical Cyclone Intensities in the Vicinity of Hawaii*. J. Appl. 
Meteor., 37, 951–960.  
doi: http://dx.doi.org/10.1175/1520-
0450(1998)037<0951:MRPOTC>2.0.CO;2 
 
Wilks, Daniel S. Statistical methods in the atmospheric sciences 
/ 3rd ed. (International geophysics series; v. 100). Academic 
Press, Elsevier, 2011, 151-154 
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Lilliefors Test. In: Encyclopedia of Statistical Sciences. John 
Wiley & Sons, 2006, doi:10.1002/0471667196.ess1451.pub2 

Useful for (parameter, time 
resolution) 

Any parameter at any time resolution, e.g. sea-state parameters 
(wave heights) or meteorological parameters (wind velocities) 

Requirements for application Sample with independent extreme values (see Section 5.7.1 
Selection Methods) and fitted EVD (see Section 5.7.2 Parameter 
Estimation) 

Result/interpretation Difference values Drms or Dmax for the assessment of the 
goodness of fit of different theoretical EVDs to the sample. The 
smallest difference value characterises the best fitting EVD. 

Assessment Simple and fast forward method for the assessment of the 
goodness of fit of different EVDs to the sample. 

Example/publication Assessment of goodness of fit from 40 years moving extreme 
value analysis of time series of calculated wave heights (for the 
first realisation of actual climate C20 and future IPCC emission 
scenario B1 based on the regional climate model Cosmo-CLM) 
consisting of 3 steps per each year from 2001 to 2100. 
(1) Selection of sample consisting of 40 elements from    
      calculated annual maximum wave heights (the number of the  
      sample/year is plotted on the bottom axis) 
(2) Fitting of different EVDs (Log-Normal, Gumbel, Weibull    
      distribution) to the selected sample 
(3) Calculation of difference values Drms resp. Dmax (plotted on  
      the left axis with solid resp. dotted lines) 

 
Interpretation of Results: 
For the overall assessment the Log-Normal extreme value 
distribution (see blue line) has the smallest difference values 
Drms resp. Dmax in most of the comparisons within the time period 
of 100 years, thus the distribution it is best fitted to the EDF. 

Contact/project Norman Dreier, Hamburg Technical University, Institute of River 
and Coastal Engineering, norman.dreier@tuhh.de 
Zhen-shan Xu, College of Harbor, Coastal and Offshore 
Engineering, Hohai University, Nanjing, P.R. China,  
xuzhenshanhhu@gmail.com 
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5.7.3 Empirical Methods 

5.7.3.1  Exceedance probability and return period 
 
Superordinate objective (category) Extreme value analysis 

single extreme events 
Method Determination of the exceedance probability and return 

period, respectively, of high and low flow in watercourses 
Description + literature Statistics of flood events: 

Ermittlung von Hochwasserwahrscheinlichkeiten (August 
2012); DWA-M 552 (2012), Statistische Analyse von 
Hochwasserabflüssen; DVWK Merkblatt 251 (1999), 
Empfehlung zur Berechnung der 
Hochwasserwahrscheinlichkeit, DVWK-Regel 101 
(1976), DVWK Regel 121/1992: Niedrigwasseranalyse 
 
Statistics of precipitation: 
ATV 121 1985: Starkniederschlagshöhen für Deutschland 

Useful for (parameter, time resolution) Extreme values of high and low runoff at preferably high 
temporal resolution, precipitation events at varying durations 

Requirements for application Independence of events (exceedances of a threshold); 
high temporal resolution (less than 1 hour) of precipitation 
series for peak-runoff simulations; 
sufficient amount of extreme events over a preferably long 
time span. 

Result/interpretation Comparison of exceedance probabilities and return periods, 
respectively, of high- and low-runoff events for the climate 
scenarios; 
determination of temporal trends in flood occurrence 

Assessment Established standard method for calculating flood 
probabilities; 
allows reference to other projects; 
simple method, well tested in practice. 

Example/publication Wasserbauschrift Band 13: S. Hellmers: Hydrological Impacts 
of Climate Change on Flood Probability in Small Urban 
Catchments and Possibilities of Flood Risk Mitigation, 2010 
(Ebook) ISBN 978-3-937693-13-2 
 

Contact/project Sandra Hellmers, Hamburg Technical University, Institute of 
River and Coastal Engineering,s.hellmers@tuhh.de 
KLIMZUG NORD 
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5.7.3.2  Threshold statistics, empirical exceedance probabilities 
 
Superordinate objective 
(category) 

Extreme value analysis 

Method Threshold statistics, empirical exceedance probabilities 
Description + literature For predefined thresholds, you calculate for a time interval (e.g., 

1961–1990, 2021–2050, 2071–2100) the relative frequency 
(empirical probability) that it is reached or exceeded. 
Subsequently you can compare different time intervals with 
respect to the exceedance probability. 

Useful for (parameter, time 
resolution) 

Various climate parameters such as precipitation, temperature 
and wind as well as derived indexes such as dry periods; 
used for daily data (in principal, other temporal resolutions can be 
sused, such as hour or minute) 

Requirements for application No special restrictions since distribution-free method 
Result/interpretation Visualization of changes in the data distribution and in the 

probability of extremes 
Assessment Simple empirical method (not computing-intensive), especially in 

view of the considerable uncertainty of the climate projections and 
their deficits in reflecting the observed frequency distributions 

Example/publication Bernhofer et al. (2009, 2011) 

Contact/project Johannes Franke (TU Dresden), Stephanie Hänsel (TU BA 
Freiberg) 
johannes.franke@tu-dresden  
stephanie.haensel@ioez.tu-freiberg.de 
KLIMZUG project: REGKLAM 

 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-
Verlag Dresden 
 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2009): Das Klima in der REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 1, Rhombos-
Verlag Dresden 
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5.7.4 Extreme value analysis methods 

5.7.4.1 Extreme value analysis with a Generalized Extreme Value (GEV) distribution 
 
Superordinate objective (category) Extreme value analysis 
Method Extreme value analysis with Generalized Extreme Value 

(GEV) distribution 
Description + literature Determination of exceedance probabilities of extreme values 

(univariate method) 
Useful for (parameter, time resolution) Monthly/annual maxima and minima, respectively; historical 

extreme events 
Requirements for application Stationary time series (possibly after correction for trend), 

independent data 
Result/interpretation Result is a univariate probability density function, which allows 

to determine the probability that an extreme event occurs. 
Assessment It is important that data (possibly after a transformation) stem 

from a stationary process In the presence of strong temporal 
trends the meaning of results is limited. 

Example/publication Mudersbach, Ch. and Jensen, J. (2009): 
Extremwertstatistische Analyse von historischen, 
beobachteten und modellierten Wasserständen an der 
Deutschen Ostseeküste, Die Küste, Heft 75, Sonderheft 
MUSTOK, S. 131-162, Boyens Medien GmbH, Heide i. 
Holstein 
 
Mudersbach, Ch. and Jensen, J. (2010): Non-stationary 
extreme value analysis of annual maximum water levels for 
designing coastal structures on the German North Sea 
coastline, Journal of Flood Risk Management , Vol. 3., Issue 
1, pp. 52-62, DOI:10.1111/j.1753-318X.2009.01054.x 

Contact/project Christoph Mudersbach 
Universität Siegen 
Forschungsinstitut Wasser und Umwelt  
christoph.mudersbach@uni-siegen.de  
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5.7.4.2 Nonstationary extreme value analysis with a Generalized Extreme Value 
(GEV) distribution 

 
Superordinate objective (category) Extreme value analysis 
Method Nonstationary extreme value analysis with Generalized 

Extreme Value (GEV) distribution 
Description + literature Determination of temporal trends in exceedance probabilities 

of extreme values (univariate method) 
Useful for (parameter, time resolution) Maxima and minima, respectively, from observation periods 

(e.g., months or years) that exhibit a trend 
Requirements for application Independent data 
Result/interpretation Result is a time-dependent univariate probability density 

function, which allows to determine the probability that an 
extreme event occurs. Interpretation requires therefore to 
report the time dependence. 

Assessment Method yields for data with trends meaningful results on the 
time dependence of occurrence probabilities. The underlying 
trend model (e.g., linear, exponential) has to be tested for 
suitability. 

Example/publication Mudersbach, Ch. and Jensen, J. (2010): Non-stationary 
extreme value analysis of annual maximum water levels for 
designing coastal structures on the German North Sea 
coastline, Journal of Flood Risk Management , Vol. 3., Issue 
1, pp. 52-62, DOI:10.1111/j.1753-318X.2009.01054.x 

Contact/project Christoph Mudersbach 
Universität Siegen 
Forschungsinstitut Wasser und Umwelt  
christoph.mudersbach@uni-siegen.de  
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5.7.4.3 Nonstationary extreme value analysis on basis of an inhomogeneous 
Poisson point process 

 
Superordinate objective (category) Extreme value analysis 
Method Nonstationary extreme value analysis on basis of an 

inhomogeneous Poisson point process 
Description + literature The occurrence of an extreme event is described by a 

stochastic Poisson point process. The estimation target is the 
intensity or occurrence rate, which is given by the number of 
events per time unit. An inhomegeous Poisson process has a 
time-dependent occurrence rate. The estimation is performed 
using kernel estimation (smoothing), a cross-validation 
guideline exists for the selection of the kernel smoothing 
bandwidth. Boundary effects are reduced by means of 
generating pseudodata. Pointwise confidence bands are 
constructed by means of bootstrap resampling. 
 
Cowling A, Hall P, Phillips MJ (1996) Bootstrap confidence 
regions for the intensity of a Poisson point process. Journal of 
the American Statistical Association 91:1516–1524. 

Useful for (parameter, time resolution) Any parameter at any time resolution. 
 
You can analyse three data types: 
(1) time series on which a time-dependent threshold is applied 
to yield POT data, 
(2) existing POT data and 
(3) a set of the times when an event occurred. 
 
The latter option makes this method applicable also to 
historical documentary records, where often only the date of 
an event is recorded, but not its size. 

Requirements for application Independent event dates. 
Result/interpretation Result is the time-dependent occurrence rate of extremes with 

confidence band. This allows to assess the statistical 
significance of highs and lows in climate risk. The occurrence 
rate may be further compared with other records to assess, 
for example, the role of global warming for the occurrence of 
hurricanes or heavy floods. 

Assessment A robust, nonparametric method, for which no functional form 
of the time-dependence has to be prescribed. 

Example/publication The method has been introduced to flood risk analysis by 
Mudelsee et al. (2003, 2004). It has been subsequently 
applied to several types of extreme events, such as 
hurricanes (Besonen et al. 2008), soil erosion events 
(Fleitmann et al. 2007) and wildfires (Girardin and Mudelsee 
2008). 
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Besonen MR, Bradley RS, Mudelsee M, Abbott MB, Francus 
P (2008) A 1,000-year, annually-resolved record of hurricane 
activity from Boston, Massachusetts. Geophysical Research 
Letters 35:L14705 (doi:10.1029/2008GL033950). 
 
Fleitmann D, Dunbar RB, McCulloch M, Mudelsee M, Vuille 
M, McClanahan TR, Cole JE, Eggins S (2007) East African 
soil erosion recorded in a 300 year old coral colony from 
Kenya. Geophysical Research Letters 34:L04401 
(doi:10.1029/2006GL028525). 
 
Girardin MP, Mudelsee M (2008) Past and future changes in 
Canadian boreal wildfire activity. Ecological Applications 
18:391–406. 
 
Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No 
upward trends in the occurrence of extreme floods in central 
Europe. Nature 425:166–169. 
 
Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2004) 
Extreme floods in central Europe over the past 500 years: 
Role of cyclone pathway “Zugstrasse Vb”. Journal of 
Geophysical Research 109:D23101 
(doi:10.1029/2004JD005034). 

Contact/project Manfred Mudelsee 
Climate Risk Analysis, Hannover, Germany; 
mudelsee@climate-risk-analyis.com 
www.climate-risk-analysis.com 

Software 
 

Caliza (TM), Climate Risk Analysis, Hannover, Germany, 
www.climate-risk-analysis.com/software/caliza 
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5.7.4.4  Multivariate extreme value analysis with Archimedian copulas  
 
Superordinate objective (category) Extreme value analysis 
Method Multivariate extreme value analysis with Archimedean copulas 
Description + literature The copula function (Sklar, 1959), denoted as C, describes the 

relation between a bivariate probability distribution, FXY(x,y), and 
the univariate marginal distributions, FX(x) and FY(y), as follows: 
 

. 
 
Further information can be found in the work by Nelsen (1999), 
Genest and Favre (2007) and Wahl et al. (2012), and in the 
references cited therein. 
 
In analogy to the application of univariate statistical methods, 
there exist various copula families. In hydrology, and other 
research fields as well, you often employ Archimedean copulas, 
since these are rather flexible tools and relatively easy to 
construct. You can take into account asymmetries in the 
dependence structures of the examined variables. The copulas 
are constructed by means of the copula generator, φ(t), with the 
following relation between the generator, φ(t), and the parameter 
θ: 
 
 . 
 
Genest, C. and Favre, A-C.: Everything you always wanted to 
know about copula modeling but were afraid to ask, J. Hydrol. 
Eng., 12(4), 347–368, 2007. 
 
Nelsen, R.B. (1999): An introduction to copulas. Lecture Notes 
in Statistics, 139, Springer, New York. 
 
Sklar, A. (1959): Fonctions de répartition à n dimensions et leurs 
marges. Publ. Inst. Statist. Univ. Paris, 8, 229–231 [cited after: 
Fisher, N.I. (1997) Copulas. In: Kotz, S., Read, C.B., and Banks, 
D.L. Encyclopedia of statistical sciences, U1, 159–163.] 
 
Wahl, T., Mudersbach, C., and Jensen, J.: Assessing the 
hydrodynamic boundary conditions for risk analyses in coastal 
areas: a multivariate statistical approach based on Copula 
functions, Nat. Hazards Earth Syst. Sci., 12, 495-510, 2012. 

Useful for (parameter, time 
resolution) 

Any parameter at any time resolution. 

Requirements for application Sufficient data sizes to determine the univariate marginal 
distributions and the dependence structure (rank correlations). 

Result/interpretation Two- or higher-dimensional probability densities and associated 
measures (e.g., return periods). 

Assessment A useful and flexible tool for analysing multivariate data sets that 
comprise dependent variables with different marginal 
distributions. 
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Example/publication The figure below shows the result of an analysis of storm-surge 
water levels, S, and the sea state variables wave height, Hs, and 
peak period, Tp, in the region of Westerland (Sylt, Germany). 
The observed data pairs are plotted as black circles, the 
resulting probability contours as black solid lines. Data pairs 
simulated by means of the copula functions (note their 
usefulness here) are shown as grey circles. 
 

 
 

Contact/project Thomas Wahl & Jens Bender, Forschungsinstitut Wasser und 
Umwelt (fwu) und Forschungskolleg Siegen (FoKoS), Universität 
Siegen, thomas.wahl@uni-siegen.de, jens.bender@uni-
siegen.de  
BMBF- XtremRisK (www.xtremrisk.de)  
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5.7.4.5 Generalized Pareto distrubution (GPD) 
 
Superordinate objective 
(category) 

Extreme value analysis 

Method Generalized Pareto Distribution (GPD) 
 

Description + literature The POT method defines the data set to be further analysed via 
the exceedance of a threshold. The POT data set is assumed 
to be describable by means of the Generalized Pareto 
Distribution (GPD). 
 
The GPD is a distribution function with three parameters: 
µ (location), σ (scale) and ξ (shape); for the formula, see, for 
example, Coles (2001). 
 
The choice of threshold includes usually a subjective element. 
The paper by Arns et al. (in review) studies time series of water 
level along the German Bight and investigates various 
threshold selection strategies; the authors demonstrate that 
adopting as threshold the 99.7 percentile yields, in this case, 
the most reliable results. In addition, the analysis (Arns et al., in 
review) shows that consistent results can only be obtained 
when including into the data set the currently largest storm-
surge height from 1976. 
 
Regarding other parameters and other locations, the threshold 
selection should, however, be further tested; for that purpose 
see, for example, Coles (2001) and Arns et al. (in review). 
 
Coles, S. (2001): An Introduction to Statistical Modeling of 
Extreme Values. Springer Verlag, London. 
Arns, A., Wahl, T., Haigh, I.D., Jensen, J., Pattiaratchi, C. (in 
review): Estimating extreme water level probabilities: a 
comparison of the direct methods and recommendations for 
best practise, sumitted to: Coastal Engineering. 

Useful for (parameter, time 
resolution) 

Any parameter (e.g., water level, wind speed or runoff). 

Requirements for application Sufficient amount of independent data, threshold selection. 
Result/interpretation GPD-derived probabilistic measures, such as return levels or 

return periods of the analysed variable. 
Assessment Next to the GEV-method the GPD method is a standard 

method for determining extreme water levels or return periods. 
The subjective threshold choice influences the results obtained.  

Example/publication The figure below shows the application of the POT–GPD 
method to a time series of water level from 1918 to 2008 at 
station Cuxhaven. The empirical probabilities are shown as 
black circles, the results from fitting a GPD are shown as black 
lines (best fit, solid; confidence interval bounds, dotted). 
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Contact/project Arne Arns & Christoph Mudersbach, Forschungsinstitut Wasser 
und Umwelt (fwu), Universität Siegen, arne.arns@uni-
siegen.de, christoph.mudersbach@uni-siegen.de 
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5.7.4.6 Nonstationary extreme value analysis with covariates: peaks over threshold 
modelled with nonstationary Poisson process 

 
Superordinate objective (category) Extreme value analysis 
Method Nonstationary extreme value analysis with 

covariates: peaks over threshold modelled with 
nonstationary Poisson process 

Description + literature Coles, S.: An Introduction to Statistical Modeling of 
Extreme Values, Springer, 2001, 208 pp. 
Katz et al.: Statistics of extremes in hydrology, Adv. Wat. 
Res., 2002, 25, 1287–1304 

Useful for (parameter, time resolution) Point events that occur independently (e.g., heavy daily 
rainfall) 

Requirements for application Independence of events (no clustering); 
for analysing trends in the occurrence of extremes, the 
time series should be long enough (relative to the return 
period of the analysed events). 

Result/interpretation Temporal trends (high quantiles of, e.g., daily (high-
)precipitation events) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Result: The figure shows the relative change [%] of the 
99.9 % quantile of daily precipitation in a regional climate 
model simulation over Europe for the summer months 
(JJA) for 1961-2099, estimated with a non-stationary 
Poisson-Point-Process.  While the quantiles slightly 
change to positive values over Northern Europe, the 
values over land masses in Southern Europe decrease 
up to 30 %.   
 

Assessment Following points should be considered. 
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(1) Prior to the estimation, data should possibly be 
cleaned of “heavy-rainfall clusters” (e.g., by imposing a 
temporal span of one day for defining one event). This 
de-clustering is described by: 
 
Davison, A. C. & Smith, R. L.: Models for exceedances 
over high thresholds J. R. Statist, Soc., 1990, 52, 393–
442 
 
(2) At the trend analysis, the estimation uncertainty 
increases with the quantile level. 

Example/publication Radermacher, C. & Tomassini, L.:  
Thermodynamic causes for future trends in heavy 
precipitation over Europe based on an ensemble of 
regional climate model simulations, Journal of Climate, 
Early online release 2012 

Contact/project Christine Radermacher 
Max-Planck-Institut für Meteorologie, Hamburg, 
Germany 
christine.radermacher@zmaw.de 
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5.8 Indexes 
 
Climate models render the elementary physical variables, such as temperature, pressure and 
precipitation, at certain space–time grid points. Yet the impacts of climate on the other 
system components (humans, agriculture, and so forth) typically depend on a subset of the 
grid point values, and with a degree of smoothing over space and time. Consider for example 
heatwaves, where the upper extremes of the temperature distribution are of interest with the 
additional temporal constraint of duration (Kürbis et al. 2009, Rahmstorf and Coumou, 2011). 
 
A climate index is a way to distill the high-dimensional model output (and observations as 
well) into a single number. Owing to the rich variety of different impacts and the interests of 
climate researchers, there exists a variety of climate indexes employed in practice. We 
present the following: the difference in transpiration (Section 5.8.1.4), the frequency of frost 
days (Section 5.8.2.2) and the thermal vegetation period (Section 5.8.2.3). 
 
Also the comparison of a climate model output and observations can be distilled into an 
index, which reflects the ponderance of the climate researcher’s interest (i.e., which 
variable(s) at which space–time resolution). We show the following comparison indexes and 
approaches: the Nash–Sutcliffe model efficiency (Section 5.8.1), the percent bias (Section 
5.8.1.5), the usage of a reference period (Section 5.8.1.2) and the skill score combined with 
the hit rate (Sections 5.8.1.3 and 5.8.1.4). 
 
Further reading. An early report on climate indexes is by Easterling et al. (2003). The 
reports by Working Group II of the IPCC, the current (AR4) one edited by Parry et al. (2007), 
which deal with climate impacts, describe many indexes currently in use. Comparison 
indexes are presented in a book edited by Jolliffe and Stephenson (2003). 
 
Easterling DR, Alexander LV, Mokssit A, Detemmerman V (2003) CCI/CLIVAR workshop to 
develop priority climate indices. Bulletin of the American Meteorological Society 84:1403–
1407. 
 
Jolliffe IT, Stephenson DB (2003) Forecast Verification: A Practitioner's Guide in Atmospheric 
Science. Wiley, Chichester, 240 pp. 
 
Kürbis K, Mudelsee M, Tetzlaff G, Brázdil R (2009) Trends in extremes of temperature, dew 
point, and precipitation from long instrumental series from central Europe. Theoretical and 
Applied Climatology 98:187–195. 
 
Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (2007) Climate Change 2007: 
Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 
University Press, Cambridge, 976 pp. 
 
Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proceedings 
of the National Academy of Sciences of the United States of America 108:17905–17909. 
[Correction: 109: 4708] 
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5.8.1 Model evaluation measures 

5.8.1.1 Comparison of time series by means of the Nash–Sutcliffe model efficiency 
 
Superordinate objective (category) Indexes 
Method Comparison of simulated and measured (hydrological) time 

series by means of the Nash–Sutcliffe model efficiency 
(NSE) 
 

Description + literature The Nash–Sutcliffe model efficiency (Nash and Sutcliffe, 
1970) is a normalized, dimensionless statistical index that 
informs how well an observed (hydrological) variable agrees 
with a variable simulated by means of a (hydrological) 
model.  
 
Nash, J.E.; Sutcliffe, J.V.: River flow forecasting through 
conceptual models: Part I - A discussion of principles. In: 
Journal of Hydrology 10 (1970), Nr. 3, S. 282-290 
 

Useful for (parameter, time resolution) Runoff, (hydrological) load; 
Yearly, monthly, daily and hourly values 
 

Requirements for application Complete (gap-free) equidistant time series 
 

Result/interpretation Index values less than 0 indicate that the mean of the 
observations describes the system better than the simulated 
variable, which can be viewed as an unacceptable model 
efficiency. 
A value of 1 means a perfect rendering of the reality by the 
model. 
Hydrological simulations should aim for values larger than 
0.5. 

Assessment NSE ist rather susceptible against extreme model errors. 
NSE is considered as the best objective function to assess 
the fit to an observed time series. 
 

Example/publication Moriasi, D. N.; Arnold, J. G.; Liew, M. W. V.; Bingner, R. L.; 
Harmel, R. D.; Veith, T. L.: Model Evaluation Guidelines for 
Systematic Quantification of Accuracy in Watershed 
Simulations. In: Transactions of the ASABE 50 (2007), Nr. 3, 
S. 885-900 

Contact/project Frank Herrmann 
Forschungszentrum Jülich GmbH 
Institut für Bio- und Geowissenschaften 
f.herrmann@fz-juelich.de 
KLIMZUG Nord 
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5.8.1.2 Quantitative evaluation of climate model simulations for a reference period 
 

Superordinate objective (category) Indexes 
Method Quantitative evaluation of climate model simulations for a 

reference period: 
spatial pattern, variance of time series and climatologically 
averaged seasonal cycle of a meteorological variable 

Description + literature The indexes were developed for evaluating climate model 
simulations. The evaluation is based on comparing simulated 
and observed climatology, and not on comparing simulated 
and observed time series. 
 
Keuler, K., A. Block, W. Ahrens, D. Jacob, D. Rechid, L. 
Kotova, S. Kotlarski, D. Heimann, M. Zemsch, R. Knoche, E. 
Dittmann, A. Walter, F. Berger, and M. Sommer, 2006: 
Quantification of uncertainties in regional climate and climate 
change simulations (QUIRCS).  

Useful for (parameter, time resolution) Monthly values of temperature, precipitation, cloudiness, 
relative humidity and wind speed.  

Requirements for application Availability of observational data. 
Sufficient integration time period of the climate model under 
evaluation (e.g., 30 years climate period). 

Result/interpretation The indexes are partly with dimension (e.g., BIAS), partly 
without (e.g., pattern correlation). The various indexes can 
assume various ranges of value. 

Assessment The indexes allow to objectively quantify the skill of climate 
model simulations for a reference period. Not all indexes can 
be meaningfully applied to all meteorological variables. For 
example, the seasonal cycle in temperature at mid latitudes is 
clearly expressed. As a result, the indexes evaluating the 
climatologically averaged seasonal cycle may show good 
values, even when climate model simulations deviate 
considerably from the observations. 

Example/publication  
Contact/project Robert Schoetter 

Universität Hamburg, Meteorologisches Institut 
robert.schoetter@zmaw.de 
KLIMZUG NORD 
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5.8.1.3 Evaluation of mesoscale meteorological models and mesoscale dispersion 
models 

 
Superordinate objective (category) Indexes 
Method Evaluation of mesoscale meteorological models and 

mesoscale dispersion models 
Description + literature The model evaluation measures quantify the skill of 

simulations of mesoscale models. 
 
K.H. Schlünzen and R.S. Sokhi (editors), 2008: Overview of 
tools and methods for meteorological and air pollution 
mesoscale model evaluation and user training. Joint Report of 
COST Action 728 (Enhancing mesoscale meteorological 
modeling capabilities for air pollution and dispersion 
applications) and GURME (GAW Urban Research 
Meteorology and Environment Project). World Meteorological 
Organisation, 2008, 116 pp. 

Useful for (parameter, time resolution) Temperature, dew-point temperature, sea-level pressure, wind 
speed, wind direction, cloudiness, precipitation and 
concentrations. 
 
The evaluation employs hourly data since measurement data 
at higher temporal resolution are usually not available and 
results from Reynolds-averaged mesoscale models should not 
be interpreted at higher temporal resolution. 

Requirements for application Availability of quality-controlled and preferably representative 
measurement data. 
Some indexes (e.g., standard deviation) are meaningful only 
when the deviations between model and data are 
approximately normally distributed. 

Result/interpretation The model evaluation measures permit to objectively quantify 
the quality of the simulation results. You can compare different 
models as well as different versions of the same model. 

Assessment Not all model evaluation measures for all meteorological 
variables are meaningful at the same degree. For example, 
the correlation between hourly temperature data from model 
and measurement is high owing to the diurnal cycle. Some 
meteorological variables require specifically tailored 
evaluation measures (e.g., wind direction), which cannot be 
applied to other variables. Most of the evaluation measures 
are not suited for evaluating climate model results because no 
agreement of time series can be assumed. 

Example/publication K.H. Schlünzen and J.J. Katzfey, 2003: Relevance of sub-
grid-scale land-use effects for mesoscale models. Tellus 
(2003), 55A, 232–246 

Contact/project Robert Schoetter 
Meteorologisches Institut, Universität Hamburg 
KLIMZUG-NORD 
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5.8.1.4 Evaluation of the frequency distribution by means of skill score and hit rate 
of the percentiles 

 
Superordinate objective (category) Indexes 
Method Evaluation of the frequency distribution by means of skill 

score (SSC) and hit rate of the percentiles (HRP) 
Description + literature The model evaluation measures SSC and HRP quantify how 

well simulated and observed frequency distributions agree. 
Both indexes are dimensionless and lie between 0 and 1. 
  
Perkins et al. (2007), Schoetter et al. (2012) 

Useful for (parameter, time resolution) Temperature, relative humidity, cloudiness, wind speed; 
daily values 

Requirements for application Reliable set of observational data for the area in which 
models are evaluated; or (for HRP) at least an estimate of the 
uncertainty of the observational data. 

Result/interpretation SSC measures the degree of overlap of the frequency 
distributions (0: distributions disjoint, 1: distributions agree 
perfectly). 
HRP measures the proportion of percentiles, which lies within 
the uncertainty interval of the observational data; HRP can 
therefore assume a value of 1 even when simulated and 
observed frequency distributions do not agree perfectly. 

Assessment SSC is a very robust measure; however, the theoretical range 
(between 0 and 1) is rarely found in practice. 
HRP is clearly less robust. 

Example/publication Perkins, S.E., A.J. Pitman, N.J. Holbrook, and J. McAneney, 
2007: Evaluation of the AR4 climate models' simulated daily 
maximum temperature, minimum temperature, and 
precipitation over Australia using probability density functions. 
J. Climate, 20, 4356-4376. 
Schoetter, R., P.Hoffmann, D.Rechid, and K.H. Schlünzen, 
2012: Evaluation and bias correction of regional climate 
model results using model evaluation measures. 
J. Appl. Meteor. Climatol., 51, 1670–1684. 

Contact/project Robert Schoetter 
Meteorologisches Institut, Universität Hamburg 
robert.schoetter@zmaw.de 
KLIMZUG NORD 
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5.8.1.5 Comparison of time series by means of the percent bias 
 
Superordinate objective (category) Indexes 
Method Comparison of time series by means of the percent bias 

(PBIAS) 
Description + literature Measures the average tendency of a simulated variable (time 

series) to be larger or smaller than the respective observed 
variable. Quantifies, thus, the tendency of a model to 
systematically over- or underestimate the observations. 
 
Gupta, H. V.; Sorooshian, S.; Yapo, O. P.: Status of automatic 
calibration for hydrologic models: Comparison with multilevel 
expert calibration. In: Journal of Hydraulic Engineering 4 
(1999), Nr. 2, S. 135-143 

Useful for (parameter, time resolution) Runoff, (hydrological) load; 
Yearly, monthly, daily and hourly values  

Requirements for application Complete (gap-free) equidistant time series  
Result/interpretation The optimum value of PBIAS is 0. Positive values indicate 

overestimation, negative values indicate underestimation.  
Assessment Using PBIAS allows to clearly detect a bad model 

performance. PBIAS varies within different calibration periods 
(dry, wet) more or less strongly. 

Example/publication Moriasi, D. N.; Arnold, J. G.; Liew, M. W. V.; Bingner, R. L.; 
Harmel, R. D.; Veith, T. L.: Model Evaluation Guidelines for 
Systematic Quantification of Accuracy in Watershed 
Simulations. In: Transactions of the ASABE 50 (2007), Nr. 3, 
S. 885-900 

Contact/project Frank Herrmann 
Forschungszentrum Jülich GmbH 
Institut für Bio- und Geowissenschaften 
f.herrmann@fz-juelich.de 
KLIMZUG Nord 
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5.8.1.6 Aikaike Information Criterion 
 
 

Superordinate objective (category) Indexes 
Method Aikaike Information Criterion 
Description + literature The optimal model from a set of plausible models can be 

determined by the Aikaike Information Criterion (AIC, Aikaike 
(1973)), which is given by AIC = -2 log L + 2k, 
where k is the number of parameters and L is the Likelihood. 
 
In contrast to the likelihood ratio test, the AIC can be used 
to compare models which are not nested. 
 
Aikaike, H., 1973: Information theory and an extension of the 
maximum likelihood principle. nd International Symposium on 
Information Theory, B. Petrov and F. Csaki, Eds., Budapest, 
Akademie Kiade, 267-281. 

Useful for (parameter, time resolution) Model selection (also non-nested models), e.g. to determine 
the best set of covariates for an extreme value model 

Requirements for application For finite (small) sample sizes, a corrected version of the AIC 
should be applied:  
 
AICc = AIC + 2k(k+1)/(n-k-1), 
 
where n is the sample size. 

Result/interpretation The model with the minimum AIC value is considered as best 
to fit the data. 

Assessment Note that the AIC is appropriate as a relative measure for 
model comparison. It does not assess the goodness of the fit.  

Example/publication Maraun et al. (2009), Synoptic airflow in UK daily precipitation 
extremes - Development and validation of a vector generalised 
linear model, Extremes, 13, 133-153 

Contact/project christine.radermacher@zmaw.de 
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5.8.1.7 Brier Skill Score 
 
 

Superordinate objective (category) Indexes 
Method Brier Skill Score 
Description + literature A model's ability to predict the exceedance of a threshold is 

assessed with the Brier Score (BS, Brier (1950)). 
 
The relative improvement of a model compared to a reference 
model is determined by the Brier Skill Score (BSS), which can 
be interpreted as a goodness-of-fit test for the statistical 
model. 
 
The reference model can for example be represented by the 
climatological probability for exceedance 
of the threshold. The values of the BSS range between -inf 
and 1, and describe the gain of predictive skill against the 
reference model. 
 
Brier, G. W., 1950: Verification of forecasts expressed in terms 
of probability. Mon. Wea. Rev., 78, 1-3. 

Useful for (parameter, time resolution) Assessment of model performance, model selection 
Requirements for application - 
Result/interpretation The larger (closer to 1) the BSS, the better the predictive skill 

of the model. 
Assessment The Brier Skill Score is most appropriate for assessing the 

forecast skill of binary outcomes ("exceeding" or "not 
exceeding"). To assess the skill to predict actual values, other 
measures may be more suitable.  

Example/publication Friederichs et al. (2009), A probabilistic analysis of wind gusts 
using extreme value statistics, Meteorologische Zeitschrift, 
Vol. 18, No. 6, 615-629 

Contact/project christine.radermacher@zmaw.de 
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5.8.2 Statistical climate indexes 

5.8.2.1 Difference in transpiration as measure of site suitability  
 
Superordinate objective (category) Indexes 
Method Difference between potential and actual transpiration as a 

measure of site suitability 
Description + literature Determination of the difference between potential and actual 

transpiration as a masure of the suitability of a location for 
different tree species. Spatial as well as temporal 
comparisons (e.g. climate scenarios) are possible. 
 
Falk et al. (2008), Hammel and Kennel (2001), Schultze et al. 
(2005), Pöhler et al. (2010) 

Useful for (parameter, time resolution) Potential and actual transpiration; 
temporal resolution: daily 
vegetation period: 1 year. 

Requirements for application Water balance model (1D - location or 2D - catchment 
model); daily meteorological input data: observations or 
climate model output (scenarios). 

Result/interpretation Essential indicator for the interaction of climate, soil, tree 
species and forest-stand density; 
overview of spatial variations; 
overview of possible future changes. 

Assessment Well suited index, no misleading results known.  
Example/publication Pöhler et al. (2010) 
Contact/project Hannaleena Pöhler & Jörg Scherzer   

UDATA – Umwelt und Bildung 
poehler@udata.de, scherzer@udata.de 
KLIMZUG NORD 

 
Falk, W., Dietz, E., Grünert, S., Schultze, B., Kölling, C. (2008): Wo hat die Fichte genügend 
Wasser? - Neue überregional gültige Karten des Wasserhaushalts von Fichtenbeständen 
verbessern die Anbauentscheidung; LWF aktuell, 2008. 
 
Hammel, K. U. Kennel, M. (2001): Charakterisierung und Analyse der Wasserverfügbarkeit 
und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell 
BROOK90. Forstliche Forschungsberichte München, 185, 135 S. 
 
Pöhler, H., Schultze, B., Scherzer, J. (2010): Auswirkungen des Klimawandels auf den 
Wasserhaushalt eines bewaldeten Kleineinzugsgebietes im Hochsauerland, Freiburger 
Forstliche Forschung, in Druck 
 
Pöhler, H., Schultze, B., Wendel, S., Rust, S., Scherzer, J. (2012): Auswirkungen von 
Klimawandel und Waldbaustrategien auf das Grundwasserdargebot im Privatwald der 
Niedersächsischen Ostheide, Abschlussbericht KLIMZUG-NORD Teilprojekt 3.5 
 
Schultze B., C. Kölling, C. Dittmar, T. Rötzer, W. Elling (2005): Konzept für ein neues 
quantitatives Verfahren zur Kennzeichnung des Wasserhaushalts von Waldböden in Bayern: 
Modellierung - Regression - Regionalisierung; Forstarchiv 76, 155-163 
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5.8.2.2  Frequency of frost days after vegetation start/time span between last frost 
day and vegetation start 

 
Superordinate objective 
(category) 

Indexes 

Method Determination of the frequency of frost days after vegetation start 
and the time span between last frost day and vegetation start 

Description + literature Agricultural vegetation start is defined as begin of flowering of Salix 
caprea (English pussy willow, German Sal-Weide) after 
Länderinitiative Klimaindikatoren (LIKI); 
in fruit growing, also the definition as begin of fruit flowering can be 
used; 
 
frost day = day with minimum temperature <0°C; 
 
determination of influencing time span after vegetation start is, 
following convention of fruit flowering, 10 days (Chmielewski et al. 
2009) → determination of the freqeuncy of frost days. Possibly, 
classes of frost magnitude (e.g., < –2 °C) can be formed since not 
all plant types have the same frost susceptibility. 

Useful for (parameter, time 
resolution) 

Assessment of future frost risk in agriculture 

Requirements for application Information on start of flowering of Salix caprea, if unavailable, the 
vegetation start has to be otherwise defined (e.g., via temperature 
threshold) 

Result/interpretation Late-frost risk at a location increases with (1) the time span between 
last frost day and vegetation start and (2) the frequency of frost days 
within a defined time period after vegetation start. 

Assessment Yields a rough estimate at regional scale; microclimatological 
influences cannot be taken into account; making statements on the 
risk of individual plant species requires accurate knowledge of frost 
risk in the growth periods. 

Example/publication Abschätzung der Spätfrostgefährdung in der Modellregion Dresden 
(Chapter Vegetationsperiode und Spätfrostgefährdung in Bernhofer 
et al. (2011)) 

Contact/project Maria Foltyn (former LfULG) 
Technische Universität Bergakademie Freiberg 
foltyn@mailserver.tu-freiberg.de  
KLIMZUG project: REGKLAM 

 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-
Verlag Dresden 
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5.8.2.3 Counting method for determining the thermal vegetation period 
 
Superordinate objective (category) Indexes 
Method Counting method for determining the thermal vegetation 

period (via temperature threshold) 
Description + literature Temperature threshold after Vogel is applied, as is 

implemented in, for example, the Sächsische 
Klimadatenbank. 
 
Begin: average daily temperature ≥ 5 °C for 7 successive 
days; 
End: average daily temperature < 10 °C for 7 successive 
days. 
 
Begin/end of the thermal vegetation period is then 
defined as the last of those successive days. 
 
Unusual warm periods in winter may lead to implausible, 
clearly too early vegetation start. To prevent this, you 
start with counting only when average temperatures of 
three successive months exceed 5 °C. The start of the 
month before this additional three-month criterion is the 
start day for counting. 

Useful for (parameter, time resolution) Water balances, agriculture, carbon balances 
Requirements for application Gap-free temperature series 
Result/interpretation Observational data over the past years as well as future 

projections show that vegetation begins earlier and ends 
later than in the past. 

Assessment Rather straightforward in application since only daily 
average temperature data are required; possibly large 
interannual variations of index 

Example/publication Chapter Vegetationsperiode in Bernhofer et al. (2009, 
2011) 

Contact/project Majana Heidenreich (TU Dresden), Maria Foltyn (former 
LfULG, now TU BA Freiberg) 
majana.heidenreich@tu-dresden.de, 
foltyn@mailserver.tu-freiberg.de  
KLIMZUG project: REGKLAM, TP 2.1 

 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-
Verlag Dresden 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2009): Das Klima in der REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – 
regionales Klimaanpassungsprogramm für die Modellregion Dresden, Heft 1, Rhombos-
Verlag Dresden 
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5.9 Spatiotemporal methods 
 
Spatiotemporal data are abundant in climate modelling as well as climate observing. Already 
the previous sections contain several methods to analyse this data type, such as multivariate 
extremes (Section 5.7.4), physical downscaling and two-dimensional interpolation (Section 
5.6.1 und 5.6.2) and the construction of indexes (Section 5.8). The present section (5.9) 
explains some further methods. 
 
Statistical models help to objectively classify general weather situations and decipher spatial 
patterns in high-dimensional spatiotemporal data (Section 5.9.1). temperature sums (Section 
5.9.2) are used for projecting phenological dates; the relation of those sums to climate 
indexes is evident. Spatial maps showing the correlation between one climate time series 
and other series from a spatiotemporal field (Section 5.9.1) may also be used to explore 
spatial patterns; note the various correlation methods (Sections 5.1.1, 5.1.2 and 5.1.3) that 
principally could be applied. 
 
Further reading. See the recommendations for further reading in the aforementioned 
sections. 
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5.9.1 Correlation between two variables (correlation maps) 
 
Superordinate objective (category) Spatiotemporal methods 

correlation maps 
Method Correlation between two variables (correlation maps) 
Description + literature Correlation of time series values from records of atmospheric 

circulation and atmospheric parameters 
 
Sepp M & Jaagus J (2002) Frequency of circulation patterns 
and air temperature variations in Europe. Bor Env Res 7, 3: 
273-279 

Useful for (parameter, time 
resolution) 

Time series of the frequency of atmospheric circulation types 
and average values of climate parameters (air pressure, 
temperature, precipitation, etc.); temporal resolution: freely 
selectable (author’s experience: monthly, seasonally, half-
yearly and yearly 

Requirements for application Gap-free and preferably long and homogeneous time series 
Result/interpretation Spatial maps of various correlations 
Assessment Allows interpretation of correlations in a spatial context; allows 

assessment of noise by comparing results from dividing the 
period into parts with average over whole period 

Example/publication Sepp und Jaagus 2002 
Hoy A, Jaagus J Sepp M, Matschullat J (submitted to TAC): 
“Spatial response of two European atmospheric circulation 
classifications (data from 1901 to 2010)” 

Contact/project Andreas Hoy  
Technische Universität, Bergakademie Freiberg 
andreas.hoy@ioez.tu-freiberg.de 
KLIMZUG project: REGKLAM 
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5.9.2 Temperature sums for projecting phenological entry dates 
 
Superordinate objective 
(category) 

Spatiotemporal methods 

Method Temperature sums for projecting phenological entry dates 
Description + literature Calculate the entry date (day in year), t2, of a phenological phase 

by summing up average daily temperatures, Ti, from a start day, 
t1 (here: 1 January), until the plant-dependent temperature sum, 
F*, is reached (Eq. 1). A simple calculation of the parameter Rf is 
after Eq. (2). Depending on the analysed area and the 
phenological phase, the nonlinear approach (Eq. 3) yields slight 
deviations from the observation. TB is a basis temperature, from 
which a temperature stimulation becomes effective. 

[Eq. 1]   

[Eq. 2]             

Eq. [ 3]  

The parameters TB, F* and, possibly, t1, should be fitted in 
dependence of area and iteratively (root mean squared error as 
measure of error). Also a correction for elevation is required. 
 
Pöhler et al. (2007), Chmielewski et al. (2009) 

Useful for (parameter, time 
resolution) 

Spatial projection of point-value phenological entry dates on an 
area; possibly, filling of gaps in phenological time series; 
projections based on climate model output 

Requirements for application Preferably, gap-free, long series of input data at good spatial 
coverage to optimize parameter estimation and validation, 
availability of temperature data at daily resolution. 
If model parameters from the literature are used, the modelled 
area should be similar to that under analysis. 

Result/interpretation Estimation of future courses of vegetation is possible. Error 
margions are within the standard deviations of the observed data 
(i.e., acceptable). 
 

Assessment If using the Eqs. (1–3), only temperature data are required as 
input. However, a possible need of cold (to overcome dormancy) 
is not taken into account. This means that future entry dates very 
early in the year, may not be achievable from a plant-
physiological view. 
 

Example/publication Projektion phänologischer Phasen wildwachsender Pflanzen in 
Modellregion Dresden (Kapitel Phänologie in Bernhofer et al. 
(2011)) 

Contact/project Maria Foltyn (former LfULG) 
Technische Universität Bergakademie Freiberg 
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foltyn@mailserver.tu-freiberg.de  
KLIMZUG project REGKLAM 

 
Chmielewski, F.-M.; Blümel, K.; Henniges, Y.; Müller, A. (2009): Klimawandel und Obstbau in 
Deutschland. Endbericht des BMBF-Verbundprojekts KliO., Eigenverlag, Humboldt-Universität zu 
Berlin, 237 S 
 
Bernhofer C, Matschullat M, Bobeth A (Hrsg. 2011): Klimaprojektionen für die REGKLAM-
Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales 
Klimaanpassungsprogramm für die Modellregion Dresden, Heft 2, Rhombos-Verlag Dresden 
 
Pöhler H, Chmielewski F-M, Jasper, K, Henniges Y, Scherzer J (2007): KliWEP - Abschätzung der 
Auswirkungen der für Sachsen prognostizierten Klimaveränderungen auf den Wasser- und 
Stoffhaushalt im Einzugsgebiet der Parthe. Weiterentwicklung von WaSiM-ETH: Implikation 
dynamischer Vegetationszeiten und Durchführung von Testsimulationen für sächsische 
Klimaregionen. Abschlussbericht zum FuE-Vorhaben des Sächsischen Landesamtes für Umwelt 
und Geologie 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.9.3 Objective classification of weather situations with statistical methods 
 
Superordinate objective (category) Spatiotemporal methods 
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Method Objective classification of weather situations with statistical 
methods 

Description + literature Data (atmospheric fields) can be grouped without prior 
knowledge about groups’ properties (Huth et al. 2008) 

Useful for (parameter, time resolution) Sea-level pressure, geopotential height, relative humidity, 
temperature vorticity, layer thickness, etc. 

Requirements for application Meteorological field data should be on a grid (re-analysis, 
climate model output); analysed region should be large 
enough to resolve large-scale phenomena; time series of 
fields should be long enough (ideally more than 30 years at 
daily resolution) 

Result/interpretation You obtain spatial patterns (weather situations) and a time 
series, for which each time value (often: 1 day) corresponds 
to the weather situation on the following day. 

Assessment Well suited to reduce data amount because an analysis is 
only necessary for each single weather situation. Calculation 
is fast in most cases. But the suitable region and variables 
have to be determined. For methods based on k-means the 
optimal amount of weather situations has to be determined in 
addition. 

Example/publication COST733 software contains various methods for classifying 
weather situations 
  
http://geo21.geo.uni-
augsburg.de/cost733wiki/Cost733Software  
 
Huth et al. (2008); Philipp et al. (2010) 

Contact/project Peter Hoffmann 
Universität Hamburg, Meteorologisches Institut  
peter.hoffmann@zmaw.de 
KLIMZUG NORD 

 
Huth, R. and Beck, C. and Philipp, A. and Demuzere, M. and Ustrnul, Z. and Cahynova, M. and 
Kysely, J. and Tveito, O. E., (2008): Classifications of Atmospheric Circulation Patterns, Recent 
Advances and Applications, Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 
1146: 105-152 
 
Philipp, A., J. Bartholy, C. Beck, M. Erpicum, P. Esteban, X. Fettweis, R. Huth, P. James, S. 
Jourdain, F. Kreienkamp, T. Krennert, S. Lykoudis, S. C. Michalides, K. Pianko-Kluczynska, P. 
Post, D. R. Álvarez, R. Schiemann, A. Spekat and F. S. Tymvios (2010): Cost733cat – A database 
of weather and circulation type classification. Physics and Chemistry of the Earth, 35, 360-373. 
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5.9.4 Generalized Additive Model (GAM) 
 
Superordinate objective (category) Space-time-approach 

 
Method Generalized additive Model (GAM) 

 
Description + literature GAMs are semi-parametric extensions of generalized linear 

models. They allow fitting of response curves with a 
nonparametric smoothing function instead of parametric terms. 
This improves the exploration of species responses to 
environmental gradients. GAMs can be used for the analysis of 
continuous metric as well as for binomial data (0 and 1). 
A GAM can be fitted to a climate data experiment of the present 
day time slice, based on presence-absense data of the species 
of interest. With the help of the models, visualized by response 
curves, a spatial probability of occurrence can be calculated. 
 
 

  
Useful for 
(parameter, time resolution)  

probability of species distribution  
 
 

Requirements for application PresenceAbsence-data of appropriate species.  
Gridded data of climate indices to determine climate conditions. 

Result / Interpretation The output is a floating number between 0 (no) and 1 (maximum 
probality of occurence) and with the help of a transformation into 
favourabilites (Real et al. 2006) describes the environmental 
favourability of a site for a species. 

Assessment Methode to generate projections of future species favourabilites. 
Precondition is an existing presence-absence data base.  

Example / publication  S. Wood, Generalized additive models: an introduction with R, 
Vol. 66, CRC Press, 2006. 
 S. Wood, Mixed GAM Computation Vehicle with 
GCV/AIC/REML 
smoothness estimation (06 2012). 
E. A. Freeman, G. Moisen, PresenceAbsence: An R package for 
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presence absence analysis, Journal of Statistical Software 23 
(11) (2008) 1 -31. 
R. Real, A. M. Barbosa, J. M. Vargas, Obtaining environmental 
favourability functions from lo566 
gistic regression, Environmental and Ecological Statistics 13 (2) 
(2006) 237{245. 
 

 
 
Environmental favourability of Fagus sylvatica in Europe, based 
on mean climate data of the time period 1971-2000 
  

Contact / project  Nils Hempelmann, Helmholtz-Zentrum Geesthacht, Climate 
Service Center, Hamburg 
nils.hempelmann@hzg.de 
Wolfgang Falk, Bayerische Landesanstalt für Wald und 
Forstwirtschaft, Freising 
Wolfgang.Falk@lwf.bayern.de 

Software (if possible) 
 

R package mgcv (Mixed GAM Computation) 
R package PresenceAbsence (plausibility tools) 

 



 114 

 

5.10 Ensemble analysis 
 
This category refers to ensembles of climate simulations. A transfer of the methods to another 
scope, particularly to an ensemble of measured series, was not tested.  
 
An ensemble of model simulations may consist of different models but only one scenario (multi-
model-ensemble), one model and different scenarios (multi-scenario-ensemble), one model and 
different parameterisation schemes (multi-parameterisation-ensemble), or one model, one 
parameterisation scheme and different realisations (multi-member-ensemble). 
 
In adaptation projects, it is recommended to use a greatest possible model ensemble for 
evaluation and application of climate model results in order to achieve robust results. Only an 
ensemble analysis enables to make sensible use of the model-inherent uncertainties for assessing 
the results. Options for action and assistance for interpretation can e.g. be found in Haensler et al. 
(2013). They are partly based on recommendations of the International Panel on Climate Change 
(IPCC) to analyse ensembles which are described in Chapter 1.6 'The IPCC Assessments of 
Climate Change and Uncertainties'  in Soloman et al. (2007). The main topics here are 
uncertainties which are the reason for the application of ensemble analysis. 
 
The following statistical methods describe the percentile analysis (5.10.1), the likelihood scheme, 
based on the IPCC recommendations (5.10.2), and an example for aa test of robustness (5.10.3).   
 
 
References   
 
Haensler, A., F. Saeed, D. Jacob, 2013: Assessing the robustness of projected precipitation 
changes over central Africa on the basis of a multitude of global and regional climate projections. 
Climatic Change, DOI: 10.1007/s10584-013-0863-8  
 
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller 
(eds.), 2007: Contribution of Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA. 
 
Further reading: 
 
Knutti, R., G. Abramowitz, M. Collins,V. Eyring , P. J. Gleckler, B. Hewitson, L. Mearns, 2010: 
Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections, 
IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, National 
Center for Atmospheric Research, Boulder, Colorado, USA, 25-27 January 2010. 
 
Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, G. A. Meehl, 2010: Challenges in Combining 
Projections from Multiple Climate Models, J.Climate, 23, 2739-2758. 
 
 
 
 
 



 115 

5.10.1 Percentile analysis 
 
Superordinate objective (category) Ensemble analysis 

 
Method Percentile analysis 

 
Description + literature An ensemble of climate simulations delivers a bandwidth of 

output variables for each time step and each gridbox. 
Reasonable statements can be derived by different tools.  One 
possibility is offered by a percentile analysis. Percentiles are 
determined by sorting the variables of the ensemble outcome 
after their value for the chosen time interval. The x-th percentile 
is the value with a x % Unterschreitungsanteil. As an example: 
the 95th percentile is the value below with 95 % of all ensemble 
members are lying. 
 

Useful for 
(parameter, time resolution)  

Each ensemble with approximately 100 and more members. In 
case of less than 100 variables, the percentiles have to be 
determined by interpolation in between the values.  
The result is a set of percentile values for each timestep and grid 
box or station of the simulation..  
 

Requirements for application At least 20 ensemble members, better more than 100. 
mindestens 20 Ensemblemitglieder, besser mehr als 100. 

Result / Interpretation In most cases the 15th, 50th, and 85th percentile are evaluated,  
if not focussing on the edges of the distribution also the 25th, 
50th and 75th percentile.  
 

Assessment The 50th percentile (median) is better suited to describe the 
average outcome of the ensemble simulation than the mean 
because single outliers do not influence this value. This is also 
true for low and high percentiles.  
 

Examole / publication German Climate Atlas of the German Meteorological Service 
(www.dwd.de -> Klima + Umwelt -> Klima in der Zukunft -> 
Deutscher Klimaatlas ) 
 

Contact / project  Barbara Hennemuth, HZG, Climate Service Center 
Barbara.hennemuth@hzg.de 
Diana Rechid, KLIMZUG-NORD, MPI für Meteorologie 
Diana.rechid@zmaw.de 
 

Software (if possible) 
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5.10.2 Likelihood of outcome 
 
Superordinate objective (category) Ensemble analysis 

 
Method Likelihood of outcome 
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Description + literature The degree of agreement is a simple measure for the 
standardised assessment of the results of an ensemble of 
climate simulations. After Solomon et al. (Eds., 2007), 
chapter.1.6 the following scale is defined: 
  
Likelihood Terminology Likelihood of the occurrence/ outcome 
 
Virtually certain > 99% probability 
Extremely likely > 95% probability 
Very likely > 90% probability 
Likely > 66% probability 
More likely than not > 50% probability 
About as likely as not 33 to 66% probability 
Unlikely < 33% probability 
Very unlikely < 10% probability 
Extremely unlikely < 5% probability 
Exceptionally unlikely < 1% probability  

Useful for 
(parameter, time resolution)  

Quantitative results (e.g. temperature) of a sufficiently large 
ensemble of climate simulations of different climate models 
which can be presented in frequency distribution. 
 

Requirements for application The data must be suitable for a probabilistic evaluation, e.g. be 
presented in a frequency distribution, and the value of a 
statement to be examined must be prescribed (e.g. the sign of 
anclimate change signal, the exceedence of a certain threshold 
by a modeled parameter). The statement must be quantifiable 
(see ‘description’).  
 

Result / Interpretation The interpretation depends on the kind of the result.  
Evaluating the sign of a trend, the likelihood can be assessed by 
the number of models with the same direction of trend. 
Evaluating the temperature increase, the likelihood of the 
exceedence of a threshold of e.g. 3 K can be assessed.  
 

Assessment Simple determination. 
In accordance with the definitions of IPCC. 
 

Examole / publication 

 
 
Cumulative distributions of climate sensitivity derived from 
observed 20th-century warming (red), model climatology (blue), 
proxy evidence (cyan) and from climate sensitivities of AOGCMs 
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(green). Horizontal lines and arrows mark the boundaries of the 
likelihood estimates defined in the IPCC Fourth Assessment 
Uncertainty Guidance  
Quelle: 
Solomon et al. (Eds, 2007) 
 

Contact / project  Barbara Hennemuth, HZG, Climate Service Center 
barbara.hennemuth@hzg.de 
Diana Rechid, MPI für Meteorologie 
diana.rechid@zmaw.de 
 

Software (if possible) 
 

 

 
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L.Miller 
(eds.), 2007: Contribution of Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, Cambridge, 
United Kingdom and New York, NY, USA. 
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5.10.3 Robustness of climate change signal 
 
Superordinate objective (category) Ensemble analysis 

 
Method Robustness of climate change signal 

 
Description + literature The robustness of the climate change result of an ensemble of 

climate simulations is defined in the IPCC Third Assessment Re-
port - Climate Change 2001: Synthesis Report, Question 9: 
 
 'In this report, a robust finding for climate change is defined as 
one that holds under a variety of approaches, methods, models, 
and assumptions and one that is expected to be relatively 
unaffected by uncertainties.' 

The verification of robustness is based on different queries. 
Here, we describe the method which is applied in the 
‘Klimasignalkarten’. 
http://www.climate-service-center.de/031443/index_0031443.html.de 

1. Agreement (see Method ‚Likelihood‘ 5.10.2) 

Following the IPCC, the direction of change is considered to be 
‘likely’ when 66 % of all simulations agree in the direction. 

2. Signifikance 

Test of a significant difference oft he future values compared tot 
he reference period. 66 % of the simulations must pass a 
suitable significance testing geeigneten (U-Test or Mann-
Whitney-Wilcoxon Test). 

3. No dependence on small time shifts 

Both the future time period and the reference period are shifted 
back and forth by 1 … 3 years. If the variance of the climate 
change signal of all such periods is less than 25 % of the 
originally calculated climate change signal independence is 
assumed. 

The methods are described in detail under: 

http://www.climate-service-
center.de/031451/index_0031451.html.de 

Useful for 
(parameter, time resolution)  

 
Climate change signals – averaged over at least 30 years – of 
an ensemble of different climate simulations and corresponding 
uncertainty in the averaging time interval.     

Requirements for application The chosen significance test potentially needs a minimum 
number of data. 
 

Result / Interpretation Resilient statements on climate change signals which rely on an 
ensemble of climate simulations (different models, realisations, 
or projections). 
 

Assessment  
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The robustness test does not provide quantitative results on the 
climate change signal 
 

Examole / publication Klimasignalkarten  
http://www.climate-service-
center.de/031486/index_0031486.html.de 
 

 
Increase of number of days with strong precipitation (> 25 
mm/day) for the period 2036 – 2065 compared with the the 
number of the reference period 1966 – 1995 in percent. Shown 
is the median of an ensemble of 28 regional climate change 
simulations (left), and after applying the three-step robustness 
test (right). Shown are administrative districts. 
Regions with grey colour did not pass at least one test.   
The increase of days with strong precipitation is thus only robust 
for some regions in Germany. 

Contact / project  Susanne Pfeifer, HZG, Climate Service Center 
susanne.pfeifer@hzg.de 
Diana Rechid, MPI für Meteorologie, 
diana.rechid@zmaw.de 
 

Software (if possible) 
 

 - 

 
IPCC, 2001: Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the 
Third Assessment Report of the Integovernmental Panel on Climate Change [Watson, R.T. and the Core 
Writing Team (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 
398 pp. 

Pfeifer, S., Hänsler, A., Ries, H., Weber, B., Jacob, D., Rechid, D., Teichmann, C., Gobiet, A., Mudelsee, M.,, 
2013: Mapping the Robustness of Regional Climate Change Information, Submitted to: Journal of Applied 
Meteorology and Climatology. 
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5.10.4 Visualisation 
 
In the following some figures are shown which offer opportunities how to visualise the complex 
outcome of an ensemble analysis in only one picture. They originate from the document 
How to read a Climate-Fact-Sheet - Instructions for reading and interpretation of the Climate-Fact-
Sheets. Climate-Fact-Sheets - Lese- und Interpretationsanleitung für die Climate-Fact-Sheets. 
Climate Service Center, Hamburg, Mai 2013 
http://www.climate-service-center.de/036238/index_0036238.html.de 
The data base comprises global climate simulations of the ‚Coupled Model Intercomparison Project 
No.3’ (CMIP3) and regional climate simulations of the EU-Project ENSEMBLES. 
 
 

 

 

 
Figure 1: This figure shows the projected change in a parameter as averaged over two periods of 
twenty years  2046-2065 and 2081-2100 compared to the mean of the reference period 1961-
1990. On the bars the median and the regions of likelihood ‘likely’ and ‘very likely’ are marked.   
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Figure 2: This figure shows the projected change in a parameter as averaged over three periods of 
30 years 2006-2035, 2036-2065 and 2071-2100 compared to the mean of the reference period 
1961-1990. On the bars the median and the regions of likelihood ‘likely’ and the complete 
bandwidth are marked.   
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Figure 3: This figure shows the projected change of the annual cycle in a parameter in % as 
averaged over the period 2071-2100 compared to the mean of the reference period 1961-1990. 
Presented are lines of the medians of all scenarios and of each scenario, and the regions of 
likelihood ‘likely’ and ‘very likely’. 
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Figure 4: This figure shows the projected change of the annual cycle in a parameter in % as 
averaged over the period 2071-2100 compared to the mean of the reference period 1961-1990. 
Presented are lines of the medians of all global models of all global models of the scenario A1B, 
and of all regional models, and the regions of likelihood ‘likely’ and the complete bandwidth. 
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Figure 5: This figure shows in the left part the time series of the median of the projected 
temperature change as running mean over 30 years for the time period 2011-2100 and the regions 
of likelihood ‘likely’ and ‘very likely’. In the right part the median and the regions of likelihood ‘likely’ 
and ‘very likely’ of three 30-year periods and three scenarios are shown.   
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Figure 6: This figure shows in the left part the time series of the median of the projected 
temperature change as running mean over 30 years for the time period 2011-2100 and the regions 
of likelihood ‘likely’ and ‘very likely’. In the right part the median and the complete bandwidth of 
three 30-year periods and two scenarios are shown.   
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Figure 7: Graphic representation of confidence in the projected changes and the respective 
signal strength of the projected climate change signal using an example of medium 
confidence and moderate signal strength. 
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